Question Number 100296 by bobhans last updated on 26/Jun/20
$$\mathcal{G}\mathrm{iven}\:\mathrm{matrix}\:\mathrm{A}\:=\:\begin{bmatrix}{\mathrm{3}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{4}}\\{\mathrm{1}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{5}}\\{\mathrm{0}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\mathrm{6}}\end{bmatrix} \\ $$$$\mathrm{find}:\:\:\mathrm{adj}\left(\mathrm{adj}\:\mathrm{A}\right)\:? \\ $$
Answered by bemath last updated on 26/Jun/20
$$\mathrm{adj}\left(\mathrm{adj}\:\mathrm{A}\right)\:=\:\mid\mathrm{A}\mid^{\mathrm{n}−\mathrm{1}} \:.\mathrm{A} \\ $$$$\mathrm{A}_{\mathrm{3}×\mathrm{3}} \:\Rightarrow\mid\mathrm{A}\mid\:=\:\mathrm{3}\left(\mathrm{12}−\mathrm{10}\right)−\mathrm{1}\left(\mathrm{6}−\mathrm{0}\right)+\mathrm{4}\left(\mathrm{2}−\mathrm{0}\right) \\ $$$$\mid\mathrm{A}\mid\:=\:\mathrm{6}−\mathrm{6}+\mathrm{8}\:=\:\mathrm{8} \\ $$$$\Leftrightarrow\mathrm{adj}\left(\mathrm{adj}\:\mathrm{A}\right)\:=\:\left(\mathrm{8}\right)^{\mathrm{3}−\mathrm{1}} \:.\mathrm{A} \\ $$$$=\:\mathrm{64}\:\begin{bmatrix}{\mathrm{3}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{4}}\\{\mathrm{1}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\mathrm{5}}\\{\mathrm{0}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\mathrm{6}}\end{bmatrix} \\ $$$$ \\ $$