Menu Close

Given-matrix-A-a-1-1-1-a-1-1-1-a-If-B-b-A-and-B-is-orthogonal-determine-value-of-a-and-b-




Question Number 115520 by bemath last updated on 26/Sep/20
Given matrix A =  (((a   1    1)),((1   a    1)),((1    1    a)) )   If B = b.A and B is orthogonal   determine value of a and b.
$${Given}\:{matrix}\:{A}\:=\:\begin{pmatrix}{{a}\:\:\:\mathrm{1}\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:{a}\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\mathrm{1}\:\:\:\:{a}}\end{pmatrix}\: \\ $$$${If}\:{B}\:=\:{b}.{A}\:{and}\:{B}\:{is}\:{orthogonal}\: \\ $$$${determine}\:{value}\:{of}\:{a}\:{and}\:{b}. \\ $$
Answered by bobhans last updated on 26/Sep/20
B =  (((ab    b     b)),((b      ab    b)),((b      b      ab)) )  ⇒ (ab)^2 +b^2 +b^2  = 1  ⇒a^2 b^2 +2b^2  = 1 ; b^2 (a^2 +2) = 1  ⇒2ab^2 +b^2  = 0 ; b^2 (2a+1)= 0  b=0 ←rejected ; a=−(1/2)  b^2 ((1/4)+2) = 1⇒b^2  = (1/(9/4)) = (4/9)  b = ± (2/3)
$${B}\:=\:\begin{pmatrix}{{ab}\:\:\:\:{b}\:\:\:\:\:{b}}\\{{b}\:\:\:\:\:\:{ab}\:\:\:\:{b}}\\{{b}\:\:\:\:\:\:{b}\:\:\:\:\:\:{ab}}\end{pmatrix}\:\:\Rightarrow\:\left({ab}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} +{b}^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$$\Rightarrow{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} \:=\:\mathrm{1}\:;\:{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +\mathrm{2}\right)\:=\:\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}{ab}^{\mathrm{2}} +{b}^{\mathrm{2}} \:=\:\mathrm{0}\:;\:{b}^{\mathrm{2}} \left(\mathrm{2}{a}+\mathrm{1}\right)=\:\mathrm{0} \\ $$$${b}=\mathrm{0}\:\leftarrow{rejected}\:;\:{a}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{2}\right)\:=\:\mathrm{1}\Rightarrow{b}^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{9}/\mathrm{4}}\:=\:\frac{\mathrm{4}}{\mathrm{9}} \\ $$$${b}\:=\:\pm\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Commented by bemath last updated on 26/Sep/20
greattt
$${greattt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *