Question Number 31706 by gunawan last updated on 13/Mar/18
$$\mathrm{Given}\:\theta_{{n}} =\:{arc}\:\mathrm{tan}\:{n}\:,\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\theta_{{n}+\mathrm{1}} −\theta_{{n}} = \\ $$
Commented by abdo imad last updated on 18/Mar/18
$${if}\:{the}\:{question}\:{is}\:{find}\:{lim}_{{n}\rightarrow\infty} \theta_{{n}+\mathrm{1}} \:−\theta_{{n}} \:{we}\:{have} \\ $$$${lim}\:\theta_{{n}+\mathrm{1}} \:−\theta_{{n}} ={lim}_{{n}\rightarrow\infty} \:{arctan}\left({n}+\mathrm{1}\right)\:−{arctann} \\ $$$$\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{2}}\:\:=\mathrm{0} \\ $$