Question Number 121568 by mathocean1 last updated on 09/Nov/20
$$\mathrm{Given}:\:\mathrm{N}\:\mathrm{in}\:\mathrm{base}\:\mathrm{10}\:\mathrm{is} \\ $$$$\mathrm{158b687a}\:\mathrm{where}\:\mathrm{b}\:\mathrm{and}\:\mathrm{a}\:\mathrm{are} \\ $$$$\mathrm{digits}\:\left(\mathrm{a}<\mathrm{b}\right).\:\mathrm{Given}: \\ $$$$\mathrm{N}\equiv\mathrm{2}+\mathrm{a}\left[\mathrm{4}\right]. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Determinate}\:\mathrm{couples} \\ $$$$\left(\mathrm{a};\mathrm{b}\right)\:\mathrm{such}\:\mathrm{that}\:\mathrm{11}\:\mathrm{divise}\:\mathrm{N}. \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Determinate}\:\mathrm{couples}\:\left(\mathrm{a};\mathrm{b}\right) \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{3}\:\mathrm{and}\:\mathrm{25}\:\mathrm{divise}\:\mathrm{N}. \\ $$$$\mathrm{thanks}. \\ $$
Answered by kolos last updated on 17/Nov/20
$$ \\ $$$$\left.\mathrm{1}\right){jf}\:\mathrm{11}\:{divise}\:{N}\:,\:{then}\:{N}\equiv\mathrm{0}{mod}\left(\mathrm{11}\right) \\ $$$$\mathrm{15806870}+\mathrm{10000}{b}+{a}\equiv\mathrm{0}{mod}\left(\mathrm{11}\right) \\ $$$$\mathrm{2}+{b}+{a}\equiv{omod}\left(\mathrm{11}\right) \\ $$$${a}+{b}\equiv\mathrm{9}{mod}\mathrm{11} \\ $$$$\left({a},{b}\right)=\left(\mathrm{0},\mathrm{9}\right)\left(\mathrm{1},\mathrm{8}\right)\left(\mathrm{2},\mathrm{7}\right)…\left(\mathrm{8},\mathrm{1}\right)\left(\mathrm{9},\mathrm{0}\right) \\ $$$$ \\ $$$$\left.\mathrm{2}\right){if}\:{N}\:{is}\:{multiple}\:{of}\:\mathrm{25}\:,\:{therefore} \\ $$$${the}\:{last}\:{two}\:{digits}\:{are}\:\mathrm{00}\:,\mathrm{25},\mathrm{50}\:{or}\:\mathrm{75} \\ $$$$ \\ $$$${as}\:{the}\:{last}\:{two}\:{digits}\:{of}\:{N}\:{are}\:\mathrm{7}{a}\:,\:{then} \\ $$$${a}=\mathrm{5} \\ $$$$ \\ $$$${to}\:{be}\:{multiple}\:{of}\:\mathrm{3}\:,\:{the}\:{sum}\:{of}\:{the} \\ $$$${digits}\:{are}\:{a}\:{multiple}\:{too} \\ $$$$ \\ $$$${then} \\ $$$$\mathrm{1}+\mathrm{5}+\mathrm{8}+{b}+\mathrm{6}+\mathrm{8}+\mathrm{7}+\mathrm{5}\equiv\mathrm{0}{mod}\mathrm{3} \\ $$$${b}+\mathrm{40}\equiv\mathrm{0}{mod}\mathrm{3} \\ $$$${b}\equiv\mathrm{2}{mod}\mathrm{3} \\ $$$${b}=\mathrm{2},\mathrm{5},\mathrm{8} \\ $$$$ \\ $$$$\left({a},{b}\right)=\left(\mathrm{5},\mathrm{2}\right)\left(\mathrm{5},\mathrm{5}\right)\left(\mathrm{5},\mathrm{8}\right) \\ $$$$ \\ $$$$\left.{I}\:{hope}\:{i}'{ve}\:{helped}\::\right) \\ $$$$ \\ $$
Commented by mathocean1 last updated on 19/Nov/20
$${thank}\:{you}\:{very}\:{much}\:{sir}! \\ $$