Given-n-N-prove-that-k-1-n-k-n-1-k-n-2-3- Tinku Tara June 4, 2023 Permutation and Combination 0 Comments FacebookTweetPin Question Number 31713 by gunawan last updated on 13/Mar/18 Givenn∈Nprovethat∑nk=1k(n+1−k)=(n+23) Commented by abdo imad last updated on 13/Mar/18 wehave∑k=1nk(n+1−k)=(n+1)∑k=1nk−∑k=1nk2=(n+1)n(n+1)2−n(n+1)(2n+1)6=n(n+1)2(n+1−2n+13)=n(n+1)2(n+23)=n(n+1)(n+2)6fromanothersideCn+23=(n+2)!3!(n+2−3)!=(n+2)!6(n−1)′=(n+2)(n+1)n(n−1)!6(n−1)!=n(n+1)(n+2)6⇒∑k=1nk(n+1−k)=Cn+23. Commented by Tinkutara last updated on 13/Mar/18 Inowunderstandyournotation!YouwriteCn+23insteadofn+2C3.ButactuallyCn+23=0forn>1. Commented by abdo imad last updated on 13/Mar/18 ihaveusedthenotationCnp=n!p!(n−p)!forp⩽n. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-p-is-primes-and-A-m-n-p-n-m-m-n-N-find-sup-A-Next Next post: happy-new-year-a-b-c-Z-0-p-x-ax-2-bx-c-p-a-0-p-b-0-p-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.