Menu Close

Given-n-N-prove-that-k-1-n-k-n-1-k-n-2-3-




Question Number 31713 by gunawan last updated on 13/Mar/18
Given n ∈ N  prove that  Σ_(k=1) ^n k(n+1−k)= ((( n+2)),((     3)) )
GivennNprovethatnk=1k(n+1k)=(n+23)
Commented by abdo imad last updated on 13/Mar/18
we have Σ_(k=1) ^n k(n+1−k)= (n+1)Σ_(k=1) ^n k −Σ_(k=1) ^n k^2   =(n+1)((n(n+1))/2) −((n(n+1)(2n+1))/6)  =((n(n+1))/2)(n+1  −((2n+1)/3))=((n(n+1))/2)( ((n +2)/3))  = ((n(n+1)(n+2))/6) from anotherside  C_(n+2) ^3 =(((n+2)!)/(3!(n+2−3)!))=(((n+2)!)/(6(n−1)′))=(((n+2)(n+1)n (n−1)!)/(6(n−1)!))  = ((n(n+1)(n+2))/6)  ⇒ Σ_(k=1) ^n k(n+1−k) = C_(n+2) ^3  .
wehavek=1nk(n+1k)=(n+1)k=1nkk=1nk2=(n+1)n(n+1)2n(n+1)(2n+1)6=n(n+1)2(n+12n+13)=n(n+1)2(n+23)=n(n+1)(n+2)6fromanothersideCn+23=(n+2)!3!(n+23)!=(n+2)!6(n1)=(n+2)(n+1)n(n1)!6(n1)!=n(n+1)(n+2)6k=1nk(n+1k)=Cn+23.
Commented by Tinkutara last updated on 13/Mar/18
I now understand your notation!  You write C_(n+2) ^3  instead of^(n+2) C_3 .  But actually C_(n+2) ^3 =0 for n>1.
Inowunderstandyournotation!YouwriteCn+23insteadofn+2C3.ButactuallyCn+23=0forn>1.
Commented by abdo imad last updated on 13/Mar/18
i have used the notation  C_n ^p =((n!)/(p!(n−p)!)) for p≤n .
ihaveusedthenotationCnp=n!p!(np)!forpn.

Leave a Reply

Your email address will not be published. Required fields are marked *