Menu Close

Given-P-x-is-polynomial-such-that-P-3x-P-x-P-x-Find-the-tangent-of-curve-y-P-x-parallel-to-the-line-y-4x-2-




Question Number 161130 by blackmamba last updated on 12/Dec/21
 Given P(x) is polynomial such that   P(3x)= P ′(x).P ′′(x) . Find the tangent   of curve y = P(x) parallel to the line   y= 4x−2.
GivenP(x)ispolynomialsuchthatP(3x)=P(x).P(x).Findthetangentofcurvey=P(x)paralleltotheliney=4x2.
Answered by FongXD last updated on 12/Dec/21
Given: P(3x)=P′(x)∙P′′(x)  Degree of L.H.S=n  Degree of R.H.S=(n−1)+(n−2)=2n−3  L.H.S=R.H.S, ⇔ n=2n−3, ⇒ n=3  therefore, P(x)=ax^3 +bx^2 +cx+d  then P(3x)=27ax^3 +9bx^2 +3cx+d  • P′(x)=3ax^2 +2bx+c  • P′′(x)=6ax+2b  ⇒ P′(x)∙P′′(x)=18a^2 x^3 +18abx^2 +(4b^2 +6ac)x+2bc       P(3x)=P′(x)∙P′′(x)  then  { ((27a=18a^2 )),((9b^2 =18ab)),((3c=4b^2 +6ac)),((d=2bc)) :}, ⇒  { ((a=(3/2))),((b=3)),((3c=36+9c, ⇒ c=−6)),((d=−36)) :}  then P(x)=(3/2)x^3 +3x^2 −6x−36  and P′(x)=(9/2)x^2 +6x−6  Given that tangent line is parallel to the line y=4x−2  ⇒ P′(x_0 )=4, ⇔ (9/2)x_0 ^2 +6x_0 −6=4  ⇔ 9x_0 ^2 +12x_0 −20=0  ⇒ x_0 =((−6±(√(36+180)))/9)=((−2±2(√6))/3)  ⇒ P(x_0 )=(3/2)(((−2±2(√6))/3))^3 +3(((−2±2(√6))/3))^2 −6(((−2±2(√6))/3))−36  ⇒  { ((P(x_0 )=((−280−24(√6))/9), if x_0 =((−2+2(√6))/3))),((P(x_0 )=((−280+24(√6))/9), if x_0 =((−2−2(√6))/3))) :}  Tangent line: y=P′(x_0 )(x−x_0 )+P(x_0 )  ⇒  { ((y=4(x−((−2+2(√6))/3))+((−280−24(√6))/9))),((y=4(x−((−2−2(√6))/3))+((−280+24(√6))/9))) :}  ⇒  { ((y=4x−((256+48(√6))/9))),((y=4x−((256−48(√6))/9))) :}
Given:P(3x)=P(x)P(x)DegreeofL.H.S=nDegreeofR.H.S=(n1)+(n2)=2n3L.H.S=R.H.S,n=2n3,n=3therefore,P(x)=ax3+bx2+cx+dthenP(3x)=27ax3+9bx2+3cx+dP(x)=3ax2+2bx+cP(x)=6ax+2bP(x)P(x)=18a2x3+18abx2+(4b2+6ac)x+2bcP(3x)=P(x)P(x)then{27a=18a29b2=18ab3c=4b2+6acd=2bc,{a=32b=33c=36+9c,c=6d=36thenP(x)=32x3+3x26x36andP(x)=92x2+6x6Giventhattangentlineisparalleltotheliney=4x2P(x0)=4,92x02+6x06=49x02+12x020=0x0=6±36+1809=2±263P(x0)=32(2±263)3+3(2±263)26(2±263)36{P(x0)=2802469,ifx0=2+263P(x0)=280+2469,ifx0=2263Tangentline:y=P(x0)(xx0)+P(x0){y=4(x2+263)+2802469y=4(x2263)+280+2469{y=4x256+4869y=4x2564869
Commented by cortano last updated on 12/Dec/21
 9b=18ab→b=0  P(x)= (3/2)x^3  → { ((P(3x)=((81)/2)x^3 )),((P ′(x)=(9/2)x^2 )),((P ′′(x)=9x)) :}
9b=18abb=0P(x)=32x3{P(3x)=812x3P(x)=92x2P(x)=9x

Leave a Reply

Your email address will not be published. Required fields are marked *