Menu Close

Given-point-A-7-26-and-B-12-12-find-all-points-P-such-that-AP-BP-and-APB-90-




Question Number 119007 by bramlexs22 last updated on 21/Oct/20
Given point A=(7,26) and B=(12,12) , find  all points P such that ∣AP ∣ = ∣ BP ∣ and ∠APB = 90° .
GivenpointA=(7,26)andB=(12,12),findallpointsPsuchthatAP=BPandAPB=90°.
Answered by bemath last updated on 21/Oct/20
 Note that the triangle ABP is an isosceles right  triangle with ∣AP ∣ = ∣BP ∣. Let Q be the midpoint  of segment AB. Then Q=(((19)/2) ,19), where  ∣QA∣ = ∣QB∣ = ∣QP ∣  and QA ⊥ QB  Thus Q^→ A^→  = ((5/2),−7) and Q^→ P = (7,(5/2))   or (−7,−(5/2)). Let O=(0,0) be the origin , it follows that  OP^→  = OQ^→  + QP^→  = (((19)/2), 19) ±(7,(5/2)).  Consequently P = (((33)/2), ((43)/2)) or ((5/2), ((33)/2))
NotethatthetriangleABPisanisoscelesrighttrianglewithAP=BP.LetQbethemidpointofsegmentAB.ThenQ=(192,19),whereQA=QB=QPandQAQBThusQA=(52,7)andQP=(7,52)or(7,52).LetO=(0,0)betheorigin,itfollowsthatOP=OQ+QP=(192,19)±(7,52).ConsequentlyP=(332,432)or(52,332)
Answered by 1549442205PVT last updated on 21/Oct/20
AB^(→) =(5,−14)  Midpoint of AB is M(((19)/2),19),AP=BP  ⇒P(x,y) lying on the midline d of AB,so  MP^(→) =(((19)/2)−x,19−y) perpendicular to  AB^(→) ⇔AB^(→) .MP^(→) =0⇔5(((19)/2)−x)−14(19−y)=0  ⇔5x−14y+218.5=0⇒P(x,((5x+218.5)/(14)))  AP^(→) =(x−7,((5x−145.5)/(14))),BP^(→) =(x−12,((5x+50.5)/(14)))  APB^(�) =90°⇔AP^(→) ⊥BP^(→) ⇔AP^(→) .BP^(→) =0  ⇔(x−7)(x−12)+(((5x−145.5)/(14)))(((5x+50.5)/(14)))=0  x^2 −19x+84+((25x^2 −475x−7347.25)/(196))=0  221x^2 −4199x+9116.75=0  x_1 =16.5,x_2 =2.5.We get two the pointP  P_1 (16.5,((43)/2)),P_2 (2.5,((33)/2))
AB=(5,14)MidpointofABisM(192,19),AP=BPP(x,y)lyingonthemidlinedofAB,soMP=(192x,19y)perpendiculartoABAB.MP=05(192x)14(19y)=05x14y+218.5=0P(x,5x+218.514)AP=(x7,5x145.514),BP=(x12,5x+50.514)APB^=90°APBPAP.BP=0(x7)(x12)+(5x145.514)(5x+50.514)=0x219x+84+25x2475x7347.25196=0221x24199x+9116.75=0x1=16.5,x2=2.5.WegettwothepointPP1(16.5,432),P2(2.5,332)

Leave a Reply

Your email address will not be published. Required fields are marked *