Menu Close

Given-r-1-r-2-then-r-8-1-r-8-




Question Number 117188 by bemath last updated on 10/Oct/20
Given r+(1/r) = (√2) , then r^8 +(1/r^8 ) = ?
Givenr+1r=2,thenr8+1r8=?
Commented by bemath last updated on 10/Oct/20
thank you sirs
thankyousirs
Answered by AbduraufKodiriy last updated on 10/Oct/20
(r+(1/r))^2 =((√2))^2  ⇒ r^2 +2+(1/r^2 )=2 ⇒ r^2 +(1/r^2 )=0  r is Complex  (r^2 +(1/r^2 ))=0^2  ⇒ r^4 +2+(1/r^4 )=0 ⇒ r^4 +(1/r^4 )=−2  (r^4 +(1/r^4 ))^2 =(−2)^2  ⇒ r^8 +2+(1/r^8 )=4 ⇒ r^8 +(1/r^8 )=2
(r+1r)2=(2)2r2+2+1r2=2r2+1r2=0risComplex(r2+1r2)=02r4+2+1r4=0r4+1r4=2(r4+1r4)2=(2)2r8+2+1r8=4r8+1r8=2
Answered by TANMAY PANACEA last updated on 10/Oct/20
r^2 −(√2) r+1=0  r=(((√2) ±(√(2−4)))/2)=(((√2) ±(√2) i)/2)→((1/( (√2)))±i(1/( (√2))))→(cos(π/4)±isin(π/4))  r=e^(i×(π/4))  or e^(−((iπ)/4))   r^8 +(1/r^8 )  =(e^(i×(π/4)) )^8 +(e^(−i×(π/4)) )^8   =e^(i2π) +e^(−i2π)    [e^(iθ) =cosθ+isinθ]  =2cos2π=2
r22r+1=0r=2±242=2±2i2(12±i12)(cosπ4±isinπ4)r=ei×π4oreiπ4r8+1r8=(ei×π4)8+(ei×π4)8=ei2π+ei2π[eiθ=cosθ+isinθ]=2cos2π=2

Leave a Reply

Your email address will not be published. Required fields are marked *