Question Number 31708 by gunawan last updated on 13/Mar/18
$$\mathrm{Given}\:\mathrm{sequence}\:\mathrm{real}\:\mathrm{function}\:\left({f}_{{n}} \right)\:, \\ $$$${f}_{{n}} :\:\left[\mathrm{0},\:\mathrm{2}\right]\:\rightarrow\:\mathbb{R}\:,\mathrm{with}\: \\ $$$${f}_{{n}} \left({x}\right)=\frac{{x}^{{n}} }{\mathrm{1}+{x}^{{n}} }\:\:.\:{n}=\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:… \\ $$$$\mathrm{a}.\mathrm{Prove}\:\left({f}_{{n}} \right)\:\mathrm{not}\:\mathrm{uniformly}\:\mathrm{convergent}\:\mathrm{on}\:\left[\mathrm{0},\:\mathrm{2}\right] \\ $$$$\mathrm{b}.\:\mathrm{Find}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{f}_{{n}} \left({x}\right)\:,\:{x}\:\in\:\left[\mathrm{0},\:\mathrm{2}\right] \\ $$