Menu Close

Given-sequence-x-n-with-0-lt-a-x-1-lt-x-2-b-x-n-1-x-n-1-x-n-n-1-2-3-review-sequence-r-n-with-r-n-x-n-1-x-n-n-1-2-3-a-Prove-that-1-lt-r-n-lt-2-for-n-2-3-4-b-




Question Number 31705 by gunawan last updated on 12/Mar/18
Given sequence(x_n ) with 0<a=x_1 <x_2 =b  x_(n+1) =x_(n+1) +x_n  , n=1, 2, 3,...  review sequence (r_n ) with r_n =(x_(n+1) /x_n ) , n=1, 2, 3,...  a. Prove that 1<r_n <2 for n=2,3,4, ...  b. Diverge or converge is the squence?
$$\mathrm{Given}\:\mathrm{sequence}\left({x}_{{n}} \right)\:\mathrm{with}\:\mathrm{0}<{a}={x}_{\mathrm{1}} <{x}_{\mathrm{2}} ={b} \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}+\mathrm{1}} +{x}_{{n}} \:,\:{n}=\mathrm{1},\:\mathrm{2},\:\mathrm{3},… \\ $$$$\mathrm{review}\:\mathrm{sequence}\:\left({r}_{{n}} \right)\:\mathrm{with}\:{r}_{{n}} =\frac{{x}_{{n}+\mathrm{1}} }{{x}_{{n}} }\:,\:{n}=\mathrm{1},\:\mathrm{2},\:\mathrm{3},… \\ $$$$\mathrm{a}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{1}<{r}_{{n}} <\mathrm{2}\:\mathrm{for}\:{n}=\mathrm{2},\mathrm{3},\mathrm{4},\:… \\ $$$$\mathrm{b}.\:\mathrm{Diverge}\:\mathrm{or}\:\mathrm{converge}\:\mathrm{is}\:\mathrm{the}\:\mathrm{squence}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *