Menu Close

Given-sin-2-x-sin-x-1-find-the-value-of-cos-8-x-cos-6-x-cos-4-x-




Question Number 116493 by bemath last updated on 04/Oct/20
Given sin^2 x+sin x = 1 , find   the value of cos^8 x+cos^6 x+cos^4 x =?
Givensin2x+sinx=1,findthevalueofcos8x+cos6x+cos4x=?
Answered by bobhans last updated on 04/Oct/20
⇔ sin^2 x+sin x = 1; sin x = ((1− (√5))/2)  ⇔ 1−cos^2 x +sin x = 1 ; cos^2 x = sin x  ⇒cos^8 x + cos^6 x+cos^4 x =   ⇒ cos^4 x(cos^4 x + cos^2 x+1)=  ⇒cos^4 x (cos^4 x+sin x+1)=  ⇒cos^4 x (sin^2 x+sin x+1) =  ⇒cos^4 x(1+1) = 2sin^2 x =2(((1−(√5))/2))^2                                     = 2(((6−2(√5))/4))                                     = 3−(√5)
sin2x+sinx=1;sinx=1521cos2x+sinx=1;cos2x=sinxcos8x+cos6x+cos4x=cos4x(cos4x+cos2x+1)=cos4x(cos4x+sinx+1)=cos4x(sin2x+sinx+1)=cos4x(1+1)=2sin2x=2(152)2=2(6254)=35
Answered by som(math1967) last updated on 04/Oct/20
sin^2 x+sinx=1  sinx=1−sin^2 x  sinx=cos^2 x  cos^8 x+cos^6 x+cos^4 x  =cos^4 x(cos^4 x+cos^2 x)+cos^4 x  =cos^4 x(sin^2 x+cos^2 x)+cos^4 x  =cos^4 x+cos^4 x=2cos^4 x
sin2x+sinx=1sinx=1sin2xsinx=cos2xcos8x+cos6x+cos4x=cos4x(cos4x+cos2x)+cos4x=cos4x(sin2x+cos2x)+cos4x=cos4x+cos4x=2cos4x
Answered by Dwaipayan Shikari last updated on 04/Oct/20
cos^2 x=sinx  And sinx=(((√5)−1)/2) and sin^2 x=1−sinx  cos^4 x(cos^4 x+cos^2 x+1)  sin^2 x(sin^2 x+cos^2 x+1)=2sin^2 x=2(1−sinx)=3−(√5)
cos2x=sinxAndsinx=512andsin2x=1sinxcos4x(cos4x+cos2x+1)sin2x(sin2x+cos2x+1)=2sin2x=2(1sinx)=35

Leave a Reply

Your email address will not be published. Required fields are marked *