Given-sin-2-x-sin-x-1-find-the-value-of-cos-8-x-cos-6-x-cos-4-x- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 116493 by bemath last updated on 04/Oct/20 Givensin2x+sinx=1,findthevalueofcos8x+cos6x+cos4x=? Answered by bobhans last updated on 04/Oct/20 ⇔sin2x+sinx=1;sinx=1−52⇔1−cos2x+sinx=1;cos2x=sinx⇒cos8x+cos6x+cos4x=⇒cos4x(cos4x+cos2x+1)=⇒cos4x(cos4x+sinx+1)=⇒cos4x(sin2x+sinx+1)=⇒cos4x(1+1)=2sin2x=2(1−52)2=2(6−254)=3−5 Answered by som(math1967) last updated on 04/Oct/20 sin2x+sinx=1sinx=1−sin2xsinx=cos2xcos8x+cos6x+cos4x=cos4x(cos4x+cos2x)+cos4x=cos4x(sin2x+cos2x)+cos4x=cos4x+cos4x=2cos4x Answered by Dwaipayan Shikari last updated on 04/Oct/20 cos2x=sinxAndsinx=5−12andsin2x=1−sinxcos4x(cos4x+cos2x+1)sin2x(sin2x+cos2x+1)=2sin2x=2(1−sinx)=3−5 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-16-log-2-5-1-3-1-3-2-1-3-3-Next Next post: 4-3-2-5-3-1-1-6-1-2-8-1-find-numbers-of-each- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.