Menu Close

Given-sin-2a-sin-2b-cos-2a-cos-2b-2-3-find-the-value-of-cos-a-b-




Question Number 105290 by bemath last updated on 27/Jul/20
Given ((sin 2a−sin 2b)/(cos 2a+cos 2b)) = (2/3)  find the value of cos (a−b)
Givensin2asin2bcos2a+cos2b=23findthevalueofcos(ab)
Answered by bobhans last updated on 27/Jul/20
((2cos (((2a+2b)/2))sin (((2a−2b)/2)))/(2cos (((2a+2b)/2))cos (((2a−2b)/2)))) = (2/3)  tan (a−b) = (2/3) → { ((sin (a−b) = (2/( (√(13)))))),((cos (a−b) = (3/( (√(13)))))) :}  ▷
2cos(2a+2b2)sin(2a2b2)2cos(2a+2b2)cos(2a2b2)=23tan(ab)=23{sin(ab)=213cos(ab)=313
Commented by malwaan last updated on 27/Jul/20
tan(a−b) = (2/3)  ((sin(a−b))/(cos(a−b))) = (2/3)  cos(a−b) =(3/2)sin(a−b)                =(3/2)(√(1−cos^2 (a−b)))  ⇒(4/9)cos^2 (a−b)=1−cos^2 (a−b)  ⇒((13)/9)cos^2 (a−b)=1  ⇒ cos(a−b)= ± (3/( (√(13))))  ;sin(a−b)= (2/3) cos(a−b)         = ± (2/( (√(13))))
tan(ab)=23sin(ab)cos(ab)=23cos(ab)=32sin(ab)=321cos2(ab)49cos2(ab)=1cos2(ab)139cos2(ab)=1cos(ab)=±313;sin(ab)=23cos(ab)=±213
Answered by Dwaipayan Shikari last updated on 27/Jul/20
((2cos(a+b)sin(a−b))/(2cos(a+b)cos(a−b)))=(2/3)  ((√(1−cos^2 (a−b)))/(cos(a−b)))=(2/3)  (1/(cos^2 (a−b)))=(4/9)+1  cos^2 (a−b)=(9/(13))  cos(a−b)=±(3/( (√(13))))
2cos(a+b)sin(ab)2cos(a+b)cos(ab)=231cos2(ab)cos(ab)=231cos2(ab)=49+1cos2(ab)=913cos(ab)=±313

Leave a Reply

Your email address will not be published. Required fields are marked *