Menu Close

Given-sin-2x-sin-2y-5-12-cos-x-y-2-3-sin-x-y-where-0-lt-x-y-lt-pi-find-the-value-of-cos-x-y-2sin-x-y-




Question Number 105861 by bemath last updated on 01/Aug/20
Given  { ((sin 2x−sin 2y=−(5/(12)))),((cos (x+y)= −(2/3)sin (x−y))) :}  where 0 < x−y<π.  find the value of cos (x+y)+2sin (x−y)
Given{sin2xsin2y=512cos(x+y)=23sin(xy)where0<xy<π.findthevalueofcos(x+y)+2sin(xy)
Commented by PRITHWISH SEN 2 last updated on 01/Aug/20
sin 2x−sin 2y=−(5/(12))  ⇒24sin (x−y)cos (x+y)=−5 ......(i)  3cos (x+y)+2sin (x−y)=0.......(ii)  3cos (x+y)−2sin (x−y)= (√({3cos(x+y)+2sin (x−y)}^2 −24sin (x−y)cos (x+y) ))                                                        = ±(√5) .....(iii)  from (ii) − (iii)  4sin (x−y)=±(√5)  Again given  cos (x+y)=−(2/3)sin (x−y)  ⇒((cos (x+y))/(2sin (x−y))) +1 = 1−(1/3)  ⇒ cos (x+y)+2sin (x−y)=((4sin (x−y))/3) = ±((√5)/3)
sin2xsin2y=51224sin(xy)cos(x+y)=5(i)3cos(x+y)+2sin(xy)=0.(ii)3cos(x+y)2sin(xy)={3cos(x+y)+2sin(xy)}224sin(xy)cos(x+y)=±5..(iii)from(ii)(iii)4sin(xy)=±5Againgivencos(x+y)=23sin(xy)cos(x+y)2sin(xy)+1=113cos(x+y)+2sin(xy)=4sin(xy)3=±53
Answered by Dwaipayan Shikari last updated on 01/Aug/20
sin2x−sin2y=−(5/(12))  2cos(x+y)sin(x−y)=−(5/(12))  −(4/3)sin^2 (x−y)=−(5/(12))  sin(x−y)=±((√5)/4)  so cos(x+y)=±((√5)/6)  cos(x+y)+2sin(x−y)=±(−((√5)/6)+((√5)/2))=±((√5)/3)
sin2xsin2y=5122cos(x+y)sin(xy)=51243sin2(xy)=512sin(xy)=±54socos(x+y)=±56cos(x+y)+2sin(xy)=±(56+52)=±53

Leave a Reply

Your email address will not be published. Required fields are marked *