Question Number 161060 by pete last updated on 11/Dec/21
$$\mathrm{Given}\:\mathrm{sin}\left(\mathrm{5x}−\mathrm{38}\right)=\mathrm{cos}\left(\mathrm{2x}+\mathrm{16}\right),\:\mathrm{0}°\leqslant\mathrm{x}\leqslant\mathrm{90}°, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$
Commented by cortano last updated on 11/Dec/21
$$\:{recall}\:\mathrm{sin}\:\left(\mathrm{90}°−{x}\right)=\:\mathrm{cos}\:{x} \\ $$$$\Leftrightarrow\:\mathrm{sin}\:\left(\mathrm{5}{x}−\mathrm{38}°\right)=\:\mathrm{sin}\:\left(\mathrm{90}°−\left(\mathrm{128}°−\mathrm{5}{x}\right)\right)=\mathrm{cos}\:\left(\mathrm{128}°−\mathrm{5}{x}\right) \\ $$$$\Leftrightarrow\mathrm{cos}\:\left(\mathrm{128}°−\mathrm{5}{x}\right)=\:\mathrm{cos}\:\left(\mathrm{2}{x}+\mathrm{16}°\right) \\ $$$$\Leftrightarrow\mathrm{2}{x}+\mathrm{16}°=\:\pm\:\left(\mathrm{128}°−\mathrm{5}{x}\right)+\mathrm{2}{n}\pi \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{2}{x}+\mathrm{16}°=\mathrm{128}°−\mathrm{5}{x}+\mathrm{2}{n}\pi}\\{\mathrm{2}{x}+\mathrm{16}°=\mathrm{5}{x}−\mathrm{128}°+\mathrm{2}{n}\pi}\end{cases} \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{7}{x}=\mathrm{112}°+\mathrm{2}{n}\pi}\\{\mathrm{3}{x}=\mathrm{144}°+\mathrm{2}{k}\pi}\end{cases} \\ $$$$\Leftrightarrow\begin{cases}{{x}=\mathrm{16}°+\frac{\mathrm{2}{n}\pi}{\mathrm{7}}}\\{{x}=\mathrm{48}°+\frac{\mathrm{2}{k}\pi}{\mathrm{3}}}\end{cases} \\ $$
Commented by pete last updated on 11/Dec/21
$$\mathrm{thanks}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 11/Dec/21
$$\mathrm{sin}\:\left(\mathrm{5}{x}−\mathrm{38}\right)=\mathrm{cos}\:\left(\mathrm{2}{x}+\mathrm{16}\right) \\ $$$$\mathrm{cos}\:\left(\mathrm{90}−\mathrm{5}{x}+\mathrm{38}\right)=\mathrm{cos}\:\left(\mathrm{2}{x}+\mathrm{16}\right) \\ $$$$\mathrm{90}−\mathrm{5}{x}+\mathrm{38}=\mathrm{360}{k}\pm\left(\mathrm{2}{x}+\mathrm{16}\right) \\ $$$$ \\ $$$$\mathrm{90}−\mathrm{5}{x}+\mathrm{38}=\mathrm{360}{k}+\mathrm{2}{x}+\mathrm{16} \\ $$$$\mathrm{112}=\mathrm{360}{k}+\mathrm{7}{x} \\ $$$$\Rightarrow{x}=\frac{\mathrm{360}{k}}{\mathrm{7}}+\mathrm{16}=\mathrm{16}°,\:\mathrm{67}\frac{\mathrm{3}}{\mathrm{7}}° \\ $$$$\mathrm{90}−\mathrm{5}{x}+\mathrm{38}=\mathrm{360}{k}−\mathrm{2}{x}−\mathrm{16} \\ $$$$\mathrm{144}=\mathrm{360}{k}+\mathrm{3}{x} \\ $$$$\Rightarrow{x}=\mathrm{120}{k}+\mathrm{48}=\mathrm{48}° \\ $$
Commented by pete last updated on 11/Dec/21
$$\mathrm{thanks}\:\mathrm{sir} \\ $$