Menu Close

Given-sin-cos-4-3-where-0-lt-lt-pi-4-Find-the-value-of-cos-sin-




Question Number 123160 by liberty last updated on 23/Nov/20
 Given sin ρ + cos ρ = (4/3) , where    0 < ρ < (π/4). Find the value of cos ρ−sin ρ.
Givensinρ+cosρ=43,where0<ρ<π4.Findthevalueofcosρsinρ.
Answered by benjo_mathlover last updated on 23/Nov/20
⇒(sin ρ+cos ρ)^2 =((16)/9)  ⇒1+2sin ρcos ρ=((16)/9)  ⇒2sin ρcos ρ=(7/9)  since 0<ρ<(π/4) then cos ρ>sin ρ  so cos ρ−sin ρ>0  consider cos ρ−sin ρ=(√(1−2sin ρcos ρ))  cos ρ−sin ρ=(√(1−(7/9))) = ((√2)/3).
(sinρ+cosρ)2=1691+2sinρcosρ=1692sinρcosρ=79since0<ρ<π4thencosρ>sinρsocosρsinρ>0considercosρsinρ=12sinρcosρcosρsinρ=179=23.
Answered by Dwaipayan Shikari last updated on 23/Nov/20
(sinp+cosp)^2 +(cosp−sinp)^2 =2  (cosp−sinp)=(√(2−((16)/9))) =((√2)/3)   (As 0<p<(π/4))
(sinp+cosp)2+(cospsinp)2=2(cospsinp)=2169=23(As0<p<π4)

Leave a Reply

Your email address will not be published. Required fields are marked *