Menu Close

Given-sin-x-1-3-cos-x-1-3-1-3-1-3-then-sin-2-x-




Question Number 128681 by bemath last updated on 09/Jan/21
 Given ((sin x))^(1/3)  − ((cos x))^(1/3)  = (1/( (3)^(1/3) ))   then sin^2 x =?
Givensinx3cosx3=133thensin2x=?
Commented by MJS_new last updated on 09/Jan/21
not funny to solve exactly but possible...
notfunnytosolveexactlybutpossible
Answered by MJS_new last updated on 09/Jan/21
(a)^(1/3) −(b)^(1/3) =(c)^(1/3)      ∣^3   a−b−3((ab))^(1/3) ((a)^(1/3) −(b)^(1/3) )=c       [insert from above (a)^(1/3) −(b)^(1/3) =(c)^(1/3) ]  3((abc))^(1/3) =a−b−c  27abc=(a+b−c)^3   a=sin x ∧b=cos x ∧ c=(1/3)  9sin x cos x =(−(1/3)+sin x −cos x)^3   let t=tan (x/2) ⇔ x=2arctan t and transforming  t^6 +((279)/4)t^5 +21t^4 −9t^3 −42t^2 −((99)/4)t−8=0  amazingly this can be completely solved  I get 3 square factors  f_1 (t)f_2 (t)f_3 (t)=0  f_1 (t)=t^2 +(3/4)t+(1/4)  f_2 (t)=t^2 +((3(23−3(√(57))))/2)t−((67−9(√(57)))/2)  f_3 (t)=t^2 +((3(23+3(√(57))))/2)t−((67+9(√(57)))/2)  only f_3 (t)=0 has real roots  t_1 =−((3(23+3(√(57)))+(√(2(4957+657(√(57)))))/4)≈−69.4459  t_2 =−((3(23+3(√(57)))−(√(2(4957+657(√(57)))))/4)≈.971609  sin^2  x =(((2t)/(t^2 +1)))^2   now the rest is easy
a3b3=c33ab3ab3(a3b3)=c[insertfromabovea3b3=c3]3abc3=abc27abc=(a+bc)3a=sinxb=cosxc=139sinxcosx=(13+sinxcosx)3lett=tanx2x=2arctantandtransformingt6+2794t5+21t49t342t2994t8=0amazinglythiscanbecompletelysolvedIget3squarefactorsf1(t)f2(t)f3(t)=0f1(t)=t2+34t+14f2(t)=t2+3(23357)2t679572f3(t)=t2+3(23+357)2t67+9572onlyf3(t)=0hasrealrootst1=3(23+357)+2(4957+65757469.4459t2=3(23+357)2(4957+657574.971609sin2x=(2tt2+1)2nowtherestiseasy
Commented by bemath last updated on 10/Jan/21
������

Leave a Reply

Your email address will not be published. Required fields are marked *