Menu Close

Given-sin-x-cos-x-5-6-Find-the-value-of-1-sin-x-1-cos-x-




Question Number 128998 by bramlexs22 last updated on 12/Jan/21
 Given sin x +cos x = (5/6) . Find  the value of (1/(sin x)) + (1/(cos x)) .
Givensinx+cosx=56.Findthevalueof1sinx+1cosx.
Answered by liberty last updated on 12/Jan/21
From condition sin x + cos x = (5/6)   we get 1+2sin x cos x = ((25)/(36))   2sin x cos x = −((11)/(36)) or sin x cos x= −((11)/(72))  so (1/(sin x)) + (1/(cos x)) = ((sin x+cos x)/(sin x cos x)) = (5/6)×(−((72)/(11)))   = −((60)/(11))
Fromconditionsinx+cosx=56weget1+2sinxcosx=25362sinxcosx=1136orsinxcosx=1172so1sinx+1cosx=sinx+cosxsinxcosx=56×(7211)=6011
Answered by MJS_new last updated on 12/Jan/21
s+c=(5/6)  (s+c)^2 =((25)/(36)) ⇒ s^2 +c^2 +2sc=((25)/(36)) ⇒ sc=−((11)/(72))  (1/s)+(1/c)=((s+c)/(sc))=((5/6)/(−((11)/(72))))=−((60)/(11))
s+c=56(s+c)2=2536s2+c2+2sc=2536sc=11721s+1c=s+csc=561172=6011

Leave a Reply

Your email address will not be published. Required fields are marked *