Menu Close

Given-t-x-ax-4-bx-2-x-5-where-a-and-b-are-constant-If-t-4-3-then-t-4-




Question Number 128176 by liberty last updated on 05/Jan/21
Given t(x)=ax^4 +bx^2 +x+5 ; where a and b  are constant. If t(−4)=3 then t(4)=?
Givent(x)=ax4+bx2+x+5;whereaandbareconstant.Ift(4)=3thent(4)=?
Answered by bemath last updated on 05/Jan/21
(⇒) t(x)=ax^4 +bx^2 +x+5   (⇒)t(4)=256a+16b+9  we have t(−4)=256a+16b+1  so t(−4) gives us 256a+16b=2  so we find t(4)=256a+16b+9=2+9=11
()t(x)=ax4+bx2+x+5()t(4)=256a+16b+9wehavet(4)=256a+16b+1sot(4)givesus256a+16b=2sowefindt(4)=256a+16b+9=2+9=11

Leave a Reply

Your email address will not be published. Required fields are marked *