Menu Close

Given-tan-and-tan-are-the-two-roots-of-2x-2-x-2-0-then-sin-2-2-cos-2-2-tan-2-2-




Question Number 110254 by ZiYangLee last updated on 28/Aug/20
Given tan α and tan β are the two roots   of 2x^2 −x−2=0, then  sin(2α+2β)+cos(2α+2β)+tan(2α+2β)=?
Giventanαandtanβarethetworootsof2x2x2=0,thensin(2α+2β)+cos(2α+2β)+tan(2α+2β)=?
Answered by som(math1967) last updated on 28/Aug/20
tanα+tanβ=(1/2)  tanαtanβ=((−2)/2)=−1  tan(α+β)=((1/2)/(1−(−1)))=(1/4)  sin2(α+β)+cos2(α+β)+tan 2(α+β)  ((2tan(α+β))/(1+tan^2 (α+β)))+((1−tan^2 (α+β))/(1+tan^2 (α+β)))              +((2tan(α+β))/(1−tan^2 (α+β)))  now put tan(α+β)=(1/4)
tanα+tanβ=12tanαtanβ=22=1tan(α+β)=121(1)=14sin2(α+β)+cos2(α+β)+tan2(α+β)2tan(α+β)1+tan2(α+β)+1tan2(α+β)1+tan2(α+β)+2tan(α+β)1tan2(α+β)nowputtan(α+β)=14
Commented by ZiYangLee last updated on 28/Aug/20
Thanks!
Thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *