Menu Close

Given-tan-and-tan-are-the-two-roots-of-2x-2-x-2-0-then-sin-2-2-cos-2-2-tan-2-2-




Question Number 110254 by ZiYangLee last updated on 28/Aug/20
Given tan α and tan β are the two roots   of 2x^2 −x−2=0, then  sin(2α+2β)+cos(2α+2β)+tan(2α+2β)=?
$$\mathrm{Given}\:\mathrm{tan}\:\alpha\:\mathrm{and}\:\mathrm{tan}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{two}\:\mathrm{roots}\: \\ $$$$\mathrm{of}\:\mathrm{2}{x}^{\mathrm{2}} −{x}−\mathrm{2}=\mathrm{0},\:\mathrm{then} \\ $$$$\mathrm{sin}\left(\mathrm{2}\alpha+\mathrm{2}\beta\right)+\mathrm{cos}\left(\mathrm{2}\alpha+\mathrm{2}\beta\right)+\mathrm{tan}\left(\mathrm{2}\alpha+\mathrm{2}\beta\right)=? \\ $$
Answered by som(math1967) last updated on 28/Aug/20
tanα+tanβ=(1/2)  tanαtanβ=((−2)/2)=−1  tan(α+β)=((1/2)/(1−(−1)))=(1/4)  sin2(α+β)+cos2(α+β)+tan 2(α+β)  ((2tan(α+β))/(1+tan^2 (α+β)))+((1−tan^2 (α+β))/(1+tan^2 (α+β)))              +((2tan(α+β))/(1−tan^2 (α+β)))  now put tan(α+β)=(1/4)
$$\mathrm{tan}\alpha+\mathrm{tan}\beta=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{tan}\alpha\mathrm{tan}\beta=\frac{−\mathrm{2}}{\mathrm{2}}=−\mathrm{1} \\ $$$$\mathrm{tan}\left(\alpha+\beta\right)=\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}−\left(−\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{sin2}\left(\alpha+\beta\right)+\mathrm{cos2}\left(\alpha+\beta\right)+\mathrm{tan}\:\mathrm{2}\left(\alpha+\beta\right) \\ $$$$\frac{\mathrm{2tan}\left(\alpha+\beta\right)}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \left(\alpha+\beta\right)}+\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \left(\alpha+\beta\right)}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \left(\alpha+\beta\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{2tan}\left(\alpha+\beta\right)}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \left(\alpha+\beta\right)} \\ $$$$\mathrm{now}\:\mathrm{put}\:\mathrm{tan}\left(\alpha+\beta\right)=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by ZiYangLee last updated on 28/Aug/20
Thanks!
$$\mathrm{Thanks}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *