Menu Close

Given-tbat-Arg-z-1-6-and-Arg-z-1-2-3-Find-z-please-help-me-




Question Number 152091 by rexford last updated on 25/Aug/21
Given tbat Arg(z+1)=(Π/6) and   Arg(z−1)=((2Π)/3).Find z.  please help me
$${Given}\:{tbat}\:{Arg}\left({z}+\mathrm{1}\right)=\frac{\Pi}{\mathrm{6}}\:{and}\: \\ $$$${Arg}\left({z}−\mathrm{1}\right)=\frac{\mathrm{2}\Pi}{\mathrm{3}}.{Find}\:{z}. \\ $$$${please}\:{help}\:{me} \\ $$
Answered by Olaf_Thorendsen last updated on 25/Aug/21
Let z = x+iy  Arg(z+1) = (π/6) ⇒ (y/(x+1)) = tan(π/6) = (1/( (√3)))  (1)  Arg(z−1) = ((2π)/3) ⇒ (y/(x−1)) = tan((2π)/3) = −(√3)  (2)  (1) : y = ((x+1)/( (√3)))  (2) : ((x+1)/( (√3))) =−(√3)(x−1)  x = (1/2) ⇒y = (((1/2)+1)/( (√3))) = ((√3)/2)  z = x+iy = (1/2)+((√3)/2)i = e^(i(π/3))
$$\mathrm{Let}\:{z}\:=\:{x}+{iy} \\ $$$$\mathrm{Arg}\left({z}+\mathrm{1}\right)\:=\:\frac{\pi}{\mathrm{6}}\:\Rightarrow\:\frac{{y}}{{x}+\mathrm{1}}\:=\:\mathrm{tan}\frac{\pi}{\mathrm{6}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Arg}\left({z}−\mathrm{1}\right)\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}}\:\Rightarrow\:\frac{{y}}{{x}−\mathrm{1}}\:=\:\mathrm{tan}\frac{\mathrm{2}\pi}{\mathrm{3}}\:=\:−\sqrt{\mathrm{3}}\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\::\:{y}\:=\:\frac{{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\left(\mathrm{2}\right)\::\:\frac{{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:=−\sqrt{\mathrm{3}}\left({x}−\mathrm{1}\right) \\ $$$${x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{y}\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${z}\:=\:{x}+{iy}\:=\:\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\:=\:{e}^{{i}\frac{\pi}{\mathrm{3}}} \\ $$
Commented by rexford last updated on 27/Aug/21
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *