Menu Close

Given-that-1-1-x-tan-x-1-1-x-Then-find-sin-4x-




Question Number 62109 by sandhyavs last updated on 15/Jun/19
Given that  (1+(√(1+x)))tan x=(1+(√(1−x))).  Then find   sin 4x.
Giventhat(1+1+x)tanx=(1+1x).Thenfindsin4x.
Commented by sandhyavs last updated on 15/Jun/19
Also tell me the steps.Please...
Alsotellmethesteps.Please
Commented by sandhyavs last updated on 15/Jun/19
please answer me...
pleaseanswerme
Answered by MJS last updated on 15/Jun/19
tan x =t  (1+(√(1+x)))t =1+(√(1−x))  (√(1−x))−t(√(1+x))=t−1  squaring and transforming  2t(√(1−x))(√(1+x))=(t^2 −1)x+2t  squaring and transforming  ((t^2 +1)^2 x+4t(t^2 −1))x=0  ⇒ x=0 ∨ x=((4t(1−t)(1+t))/((t^2 +1)^2 ))  t=tan x  x=4sin x cos x (cos^2  x −sin^2  x)=sin 4x
tanx=t(1+1+x)t=1+1x1xt1+x=t1squaringandtransforming2t1x1+x=(t21)x+2tsquaringandtransforming((t2+1)2x+4t(t21))x=0x=0x=4t(1t)(1+t)(t2+1)2t=tanxx=4sinxcosx(cos2xsin2x)=sin4x
Commented by sandhyavs last updated on 15/Jun/19
thank you so much.
thankyousomuch.

Leave a Reply

Your email address will not be published. Required fields are marked *