Question Number 53675 by pieroo last updated on 24/Jan/19
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{1}+\mathrm{log}_{\mathrm{3}} \mathrm{x}\:=\mathrm{log}_{\mathrm{27}} \mathrm{y},\:\mathrm{express}\:\mathrm{y} \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{x}. \\ $$
Answered by kaivan.ahmadi last updated on 24/Jan/19
$$\mathrm{log}_{\mathrm{3}} \mathrm{3}+\mathrm{log}_{\mathrm{3}} \mathrm{x}=\mathrm{log}_{\mathrm{3}^{\mathrm{3}} } \mathrm{y}\Rightarrow\mathrm{log}_{\mathrm{3}} \mathrm{3x}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{log}_{\mathrm{3}} \mathrm{y}=\mathrm{log}_{\mathrm{3}} \mathrm{y}^{\frac{\mathrm{1}}{\mathrm{3}}} \Rightarrow \\ $$$$\mathrm{3x}=\mathrm{y}^{\frac{\mathrm{1}}{\mathrm{3}}} \Rightarrow\mathrm{y}=\left(\mathrm{3x}\right)^{\mathrm{3}} \\ $$
Answered by peter frank last updated on 24/Jan/19
$$\mathrm{1}={log}_{\mathrm{27}} {y}−{log}_{\mathrm{3}\:\:} {x} \\ $$$$\mathrm{1}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{log}\:_{\mathrm{3}\:} {y}−\mathrm{log}\:_{\mathrm{3}\:} {x} \\ $$$$\mathrm{3}=\mathrm{log}\:_{\mathrm{3}} {y}−\mathrm{3log}\:_{\mathrm{3}} {x} \\ $$$$\mathrm{3}=\mathrm{log}_{\mathrm{3}} \:\left(\frac{{y}}{{x}^{\mathrm{3}} }\right) \\ $$$$\mathrm{27}=\frac{{y}}{{x}^{\mathrm{3}} } \\ $$$$\mathrm{27}{x}^{\mathrm{3}} ={y} \\ $$$$ \\ $$$$…… \\ $$