Question Number 116358 by bemath last updated on 03/Oct/20
$$\mathrm{Given}\:\mathrm{that}\:\sqrt[{\mathrm{3}\:}]{\mathrm{17}−\frac{\mathrm{27}}{\mathrm{4}}\sqrt{\mathrm{6}}}\:\mathrm{and}\:\sqrt[{\mathrm{3}\:}]{\mathrm{17}+\frac{\mathrm{27}}{\mathrm{4}}\sqrt{\mathrm{6}}} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{ax}+\mathrm{b}\:=\:\mathrm{0}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{ab}. \\ $$
Answered by MJS_new last updated on 03/Oct/20
$$\sqrt[{\mathrm{3}}]{\mathrm{17}\pm\frac{\mathrm{27}\sqrt{\mathrm{6}}}{\mathrm{4}}}=\mathrm{2}\pm\frac{\sqrt{\mathrm{6}}}{\mathrm{2}} \\ $$$$\left({x}−\mathrm{2}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)\left({x}−\mathrm{2}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)={x}^{\mathrm{2}} −\mathrm{4}{x}+\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\Rightarrow\:{ab}=+\mathrm{10} \\ $$
Commented by bemath last updated on 03/Oct/20
$$\mathrm{typo}\:\mathrm{sir}.\:\mathrm{the}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{2}} −\mathrm{ax}+\mathrm{b}=\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{a}\:=\:\mathrm{4}\:\&\:\mathrm{b}\:=\:\frac{\mathrm{5}}{\mathrm{2}}\:\mathrm{sir} \\ $$
Commented by MJS_new last updated on 03/Oct/20
$$\mathrm{yes}\:\mathrm{you}'\mathrm{re}\:\mathrm{right} \\ $$
Commented by bobhans last updated on 03/Oct/20
$$\mathrm{i}\:\mathrm{like}\:\mathrm{your}\:\mathrm{method}\:\mathrm{prof}.\:\mathrm{it}'\mathrm{s}\:\mathrm{great} \\ $$
Answered by bobhans last updated on 03/Oct/20
$$\mathrm{Let}\:\mathrm{x}_{\mathrm{1}} \:=\:\sqrt[{\mathrm{3}\:}]{\mathrm{17}−\frac{\mathrm{27}}{\mathrm{4}}\sqrt{\mathrm{6}}}\:\mathrm{and}\:\mathrm{x}_{\mathrm{2}} =\sqrt[{\mathrm{3}\:}]{\mathrm{17}+\frac{\mathrm{27}}{\mathrm{4}}\sqrt{\mathrm{6}}} \\ $$$$\mathrm{Then}\:\mathrm{x}_{\mathrm{1}} .\mathrm{x}_{\mathrm{2}} \:=\:\sqrt[{\mathrm{3}}]{\left(\mathrm{17}−\frac{\mathrm{27}}{\mathrm{4}}\sqrt{\mathrm{6}}\right)\left(\mathrm{17}+\frac{\mathrm{27}}{\mathrm{4}}\sqrt{\mathrm{6}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\sqrt[{\mathrm{3}\:}]{\frac{\mathrm{125}}{\mathrm{8}}}\:=\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} \:=\:{a}\:\Rightarrow{a}^{\mathrm{3}} \:=\:{x}_{\mathrm{1}} ^{\mathrm{3}} \:+\:{x}_{\mathrm{2}} ^{\mathrm{3}} \:+\mathrm{3}{x}_{\mathrm{1}} {x}_{\mathrm{2}} \left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right) \\ $$$${a}^{\mathrm{3}} \:=\:\mathrm{34}+\mathrm{3}{ab}\:\Rightarrow{a}^{\mathrm{3}} \:=\:\mathrm{34}\:+\frac{\mathrm{15}}{\mathrm{2}}{a} \\ $$$$\Rightarrow\mathrm{2}{a}^{\mathrm{3}} −\mathrm{15}{a}−\mathrm{68}\:=\:\mathrm{0} \\ $$$$\Rightarrow\left({a}−\mathrm{4}\right)\left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{8}{a}+\mathrm{17}\right)\:=\mathrm{0}\:,\:\mathrm{for}\:{a}\in\mathbb{R} \\ $$$$\mathrm{we}\:\mathrm{get}\:{a}\:=\:\mathrm{4}\:\mathrm{and}\:\mathrm{thus}\:{ab}\:=\:\mathrm{4}×\frac{\mathrm{5}}{\mathrm{2}}=\mathrm{10} \\ $$