Menu Close

Given-that-17-27-4-6-1-3-and-17-27-4-6-1-3-are-the-roots-of-the-equation-x-2-ax-b-0-Find-the-value-of-ab-




Question Number 116358 by bemath last updated on 03/Oct/20
Given that ((17−((27)/4)(√6)))^(1/(3 ))  and ((17+((27)/4)(√6)))^(1/(3 ))   are the roots of the equation   x^2 −ax+b = 0. Find the value of ab.
Giventhat1727463and17+27463aretherootsoftheequationx2ax+b=0.Findthevalueofab.
Answered by MJS_new last updated on 03/Oct/20
((17±((27(√6))/4)))^(1/3) =2±((√6)/2)  (x−2+((√6)/2))(x−2−((√6)/2))=x^2 −4x+(5/2)  ⇒ ab=+10
17±27643=2±62(x2+62)(x262)=x24x+52ab=+10
Commented by bemath last updated on 03/Oct/20
typo sir. the equation x^2 −ax+b=0  then a = 4 & b = (5/2) sir
typosir.theequationx2ax+b=0thena=4&b=52sir
Commented by MJS_new last updated on 03/Oct/20
yes you′re right
yesyoureright
Commented by bobhans last updated on 03/Oct/20
i like your method prof. it′s great
ilikeyourmethodprof.itsgreat
Answered by bobhans last updated on 03/Oct/20
Let x_1  = ((17−((27)/4)(√6)))^(1/(3 ))  and x_2 =((17+((27)/4)(√6)))^(1/(3 ))   Then x_1 .x_2  = (((17−((27)/4)(√6))(17+((27)/4)(√6))))^(1/3)                      = (((125)/8))^(1/(3 ))  = (5/2)  x_1 +x_2  = a ⇒a^3  = x_1 ^3  + x_2 ^3  +3x_1 x_2 (x_1 +x_2 )  a^3  = 34+3ab ⇒a^3  = 34 +((15)/2)a  ⇒2a^3 −15a−68 = 0  ⇒(a−4)(2a^2 +8a+17) =0 , for a∈R  we get a = 4 and thus ab = 4×(5/2)=10
Letx1=1727463andx2=17+27463Thenx1.x2=(172746)(17+2746)3=12583=52x1+x2=aa3=x13+x23+3x1x2(x1+x2)a3=34+3aba3=34+152a2a315a68=0(a4)(2a2+8a+17)=0,foraRwegeta=4andthusab=4×52=10

Leave a Reply

Your email address will not be published. Required fields are marked *