Menu Close

Given-that-7-cos-2-24-sin-2-R-cos-2-where-R-gt-0-and-0-lt-lt-pi-2-find-the-maximum-value-of-14-cos-2-48-sin-cos-




Question Number 153736 by ZiYangLee last updated on 09/Sep/21
Given that 7 cos 2θ+24 sin^2 θ=R cos(2θ−α),  where R>0 and 0<α<(π/2), find the maximum  value of 14 cos^2 θ+48 sin θ cos θ.
Giventhat7cos2θ+24sin2θ=Rcos(2θα),whereR>0and0<α<π2,findthemaximumvalueof14cos2θ+48sinθcosθ.
Answered by mr W last updated on 09/Sep/21
7 cos 2θ+24 sin^2 θ=R cos(2θ−α)  7 cos 2θ−12cos 2θ+12=R cos(2θ−α)  −5cos 2θ+12=R cos2θ cos α−R sin 2θ sin α  12=(R cos α+5) cos2θ−R sin α sin 2θ  ((12)/( (√((Rsin α)^2 +(R cos α+5)^2 ))))=cos ϕ cos2θ−sin ϕ sin 2θ  ((12)/( (√(R^2 +25+10R cos α))))=cos(2θ+ϕ)  2θ=cos^(−1) ((12)/( (√(R^2 +25+10R cos α))))−ϕ  cos 2θ=((12(R cos α+5))/( R^2 +25+10R cos α))+((R sin α(√(R^2 −119+10R cos α)))/( R^2 +25+10R cos α))  sin 2θ=(((R cos α+5)(√(R^2 −119+10R cos α)))/( R^2 +25+10R cos α))−((12R sin α)/( R^2 +25+10R cos α))    14 cos^2 θ+48 sin θ cos θ  =7 cos 2θ+24 sin 2θ+7  =((7(12(R cos α+5)+R sin α(√(R^2 −119+10R cos α)))+24((R cos α+5)(√(R^2 −119+10R cos α))−12R sin α))/(R^2 +25+10R cos α))+7  =((84R cos α−288R sin α+420+(24R cos α+7R sin α+120)(√(R^2 −119+10R cos α)))/(R^2 +25+10R cos α))+7  .....
7cos2θ+24sin2θ=Rcos(2θα)7cos2θ12cos2θ+12=Rcos(2θα)5cos2θ+12=Rcos2θcosαRsin2θsinα12=(Rcosα+5)cos2θRsinαsin2θ12(Rsinα)2+(Rcosα+5)2=cosφcos2θsinφsin2θ12R2+25+10Rcosα=cos(2θ+φ)2θ=cos112R2+25+10Rcosαφcos2θ=12(Rcosα+5)R2+25+10Rcosα+RsinαR2119+10RcosαR2+25+10Rcosαsin2θ=(Rcosα+5)R2119+10RcosαR2+25+10Rcosα12RsinαR2+25+10Rcosα14cos2θ+48sinθcosθ=7cos2θ+24sin2θ+7=7(12(Rcosα+5)+RsinαR2119+10Rcosα)+24((Rcosα+5)R2119+10Rcosα12Rsinα)R2+25+10Rcosα+7=84Rcosα288Rsinα+420+(24Rcosα+7Rsinα+120)R2119+10RcosαR2+25+10Rcosα+7..

Leave a Reply

Your email address will not be published. Required fields are marked *