Menu Close

Given-that-a-b-and-c-are-real-numbers-that-stisfy-the-system-of-equation-above-a-b-2-1-16-c-2-1-16-b-c-2-1-25-a-2-1-25-c-a-2-1-




Question Number 119150 by abdul88 last updated on 22/Oct/20
Given that a, b and c are real numbers   that stisfy the system of equation above    a − (√(b^2  − (1/(16)) )) = (√(c^2  − (1/(16)) ))   b − (√(c^2  − (1/(25)))) = (√(a^2  − (1/(25)) ))  c − (√(a^2  − (1/(36)) )) = (√(b^2  − (1/(36))))     if  a+ b + c = (x/( (√y))) where x, y are positive integers  and y is square free, find the value  of x + y !
Giventhata,bandcarerealnumbersthatstisfythesystemofequationaboveab2116=c2116bc2125=a2125ca2136=b2136ifa+b+c=xywherex,yarepositiveintegersandyissquarefree,findthevalueofx+y!
Answered by MJS_new last updated on 22/Oct/20
the given equations have the shape  o−(√(p^2 −r))=(√(q^2 −r))  o=(√(p^2 −r))+(√(q^2 −r))  o^2 =(p^2 −r)+(q^2 −r)+2(√(p^2 −r))(√(q^2 −r))  o^2 −p^2 −q^2 +2r=2(√(p^2 −r))(√(q^2 −r))  squaring again and transforming gives  o^4 +p^4 +q^4 −2(o^2 p^2 +o^2 q^2 +p^2 q^2 )+4ro^2 =0  we see that o, p, q are interchangeable  the only different term is 4ro^2   ⇒ substracting two equations we get  (4/(16))a^2 −(4/(25))b^2 =0∧(4/(16))a^2 −(4/(36))c^2 =0  ⇒ b=(5/4)a∧c=(3/2)a  inserting above we get  a=((8(√7))/(105)) ⇒ b=((2(√7))/(21))∧c=((4(√7))/(35))  a+b+c=((2(√7))/7)=(2/( (√7)))  ⇒ x=2∧y=7 ⇒ x+y=9
thegivenequationshavetheshapeop2r=q2ro=p2r+q2ro2=(p2r)+(q2r)+2p2rq2ro2p2q2+2r=2p2rq2rsquaringagainandtransforminggiveso4+p4+q42(o2p2+o2q2+p2q2)+4ro2=0weseethato,p,qareinterchangeabletheonlydifferenttermis4ro2substractingtwoequationsweget416a2425b2=0416a2436c2=0b=54ac=32ainsertingabovewegeta=87105b=2721c=4735a+b+c=277=27x=2y=7x+y=9
Commented by PRITHWISH SEN 2 last updated on 22/Oct/20
superb!^
superb!
Commented by MJS_new last updated on 22/Oct/20
thank you
thankyou
Commented by abdul88 last updated on 23/Oct/20
  thank you Sir....:)
thankyouSir.:)
Answered by 1549442205PVT last updated on 23/Oct/20
We need the condition a≥(1/5),b≥(1/4),c≥(1/4)   for the equalities are defined  a − (√(b^2  − (1/(16)) )) = (√(c^2  − (1/(16)) ))   ⇔a= (√(b^2  − (1/(16)) )) + (√(c^2  − (1/(16)) ))   ⇔a^2 =b^2 +c^2 −(1/8)+2(√(b^2 c^2 −((b^2 +c^2 )/(16))+(1/(256))))  ⇔a^2 −b^2 −c^2 +(1/8)=2(√(b^2 c^2 −((b^2 +c^2 )/(16))+(1/(256))))  a^4 +b^4 +c^4 +(1/(64))−2a^2 b^2 −2a^2 c^2 +(a^2 /4)−((b^2 +c^2 )/4)+2b^2 c^2   =4b^2 c^2 −((b^2 +c^2 )/4)+(1/(64))⇔  a^4 +b^4 +c^4 −2(a^2 b^2 +a^2 c^2 +b^2 c^2 )+(a^2 /4)=0(1)  Somilarly,we have  b − (√(c^2  − (1/(25)))) = (√(a^2  − (1/(25)) ))⇔  a^4 +b^4 +c^4 −2(a^2 b^2 +a^2 c^2 +b^2 c^2 )+((4b^2 )/(25))=0(2)  c − (√(a^2  − (1/(36)) )) = (√(b^2  − (1/(36)))) ⇔  a^4 +b^4 +c^4 −2(a^2 b^2 +a^2 c^2 +b^2 c^2 )+((4c^2 )/(36))=0(3)  Substracting(1) from(2),(3) we get   { (((a^2 /4)−((4b^2 )/(25))=0)),(((a^2 /4)−(c^2 /9)=0)) :}⇔ { ((b^2 =((25a^2 )/(16)))),((c^2 =((9a^2 )/4))) :}⇒ { ((b=((5a)/4))),((c=((3a)/2))) :}  Replace into (3)we get  a^4 +((625a^2 )/(256))+((81a^4 )/(16))−2(((25a^4 )/(16))+((9a^4 )/4)+((225a^4 )/(64)))+(a^2 /4)=0  ⇔−((1575)/(256))a^4 +(a^2 /4)=0⇔1575a^2 =64  ⇒a=(8/(15(√7))),b=((10)/( 15(√7))),c=((12)/( 15(√7)))  a+b+c=((8+10+12)/(15(√7)))=(2/( (√7)))=(x/( (√y)))  ⇒y=7,x=2⇒(x+y)!=9!=362880
Weneedtheconditiona15,b14,c14fortheequalitiesaredefinedab2116=c2116a=b2116+c2116a2=b2+c218+2b2c2b2+c216+1256a2b2c2+18=2b2c2b2+c216+1256a4+b4+c4+1642ab222a2c2+a24b2+c24+2b2c2=4b2c2b2+c24+164a4+b4+c42(a2b2+a2c2+b2c2)+a24=0(1)Somilarly,wehavebc2125=a2125a4+b4+c42(a2b2+a2c2+b2c2)+4b225=0(2)ca2136=b2136a4+b4+c42(a2b2+a2c2+b2c2)+4c236=0(3)Substracting(1)from(2),(3)weget{a244b225=0a24c29=0{b2=25a216c2=9a24{b=5a4c=3a2Replaceinto(3)wegeta4+625a2256+81a4162(25a416+9a44+225a464)+a24=01575256a4+a24=01575a2=64a=8157,b=10157,c=12157a+b+c=8+10+12157=27=xyy=7,x=2(x+y)!=9!=362880
Commented by abdul88 last updated on 23/Oct/20
  Thank You Sir...:)
ThankYouSir:)
Commented by 1549442205PVT last updated on 25/Oct/20
You are welcome
Youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *