Question Number 28327 by Rasheed.Sindhi last updated on 24/Jan/18
$$\mathrm{Given}\:\mathrm{that}\:\frac{{a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} }{{a}^{{n}} +{b}^{{n}} }\:\mathrm{is}\:\mathrm{AM}\:\mathrm{between}\:{a} \\ $$$$\mathrm{and}\:{b}\:,\mathrm{where}\:{a}\neq{b}\:\wedge\:{a},{b}\neq\mathrm{0};\:\mathrm{find}\:\mathrm{out}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}. \\ $$
Answered by mrW2 last updated on 24/Jan/18
$$\:\frac{{a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} }{{a}^{{n}} +{b}^{{n}} }=\frac{{a}+{b}}{\mathrm{2}} \\ $$$$\mathrm{2}\left({a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} \right)=\left({a}+{b}\right)\left({a}^{{n}} +{b}^{{n}} \right) \\ $$$$\mathrm{2}{a}^{{n}+\mathrm{1}} +\mathrm{2}{b}^{{n}+\mathrm{1}} ={a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} +{ab}^{{n}} +{ba}^{{n}} \\ $$$${a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} ={ab}^{{n}} +{ba}^{{n}} \\ $$$${a}^{{n}} \left({a}−{b}\right)={b}^{{n}} \left({a}−{b}\right) \\ $$$${since}\:{a}\neq{b},\:{a}−{b}\neq\mathrm{0}\:{and}\:\frac{{a}}{{b}}\neq\mathrm{1} \\ $$$$\Rightarrow{a}^{{n}} ={b}^{{n}} \\ $$$$\Rightarrow\left(\frac{{a}}{{b}}\right)^{{n}} =\mathrm{1} \\ $$$$\Rightarrow{n}=\frac{\mathrm{log}\:\mathrm{1}}{\mathrm{log}\:\left(\frac{{a}}{{b}}\right)}=\frac{\mathrm{0}}{\mathrm{log}\:\left(\frac{{a}}{{b}}\right)}=\mathrm{0} \\ $$
Commented by Rasheed.Sindhi last updated on 25/Jan/18
$$\mathbb{T}\mathrm{h}\alpha\mathrm{n}\Bbbk\mathrm{s}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{Sir}! \\ $$