Menu Close

Given-that-a-n-is-a-geometric-sequence-where-the-first-term-a-1-gt-1-and-the-common-ratio-r-gt-0-If-b-n-log-2-a-n-where-n-N-b-1-b-3-b-5-6-and-b-1-b-3-b-5-0-find-the-general-term-of




Question Number 163324 by ZiYangLee last updated on 06/Jan/22
Given that {a_n } is a geometric sequence  where the first term, a_1 >1 and the common  ratio, r>0.   If b_n =log_2  a_n  where n∈N, b_1 +b_3 +b_5 =6,  and b_1 ∙b_3 ∙b_5 =0, find the general term of {a_n }.
Giventhat{an}isageometricsequencewherethefirstterm,a1>1andthecommonratio,r>0.Ifbn=log2anwherenN,b1+b3+b5=6,andb1b3b5=0,findthegeneraltermof{an}.
Answered by mr W last updated on 06/Jan/22
a_n =a_1 r^(n−1)   b_n =log_2  a_n =log_2  (a_1 r^(n−1) )=log_2  a_1 +(n−1)log_2  r  let α=log_2  a_1 ≠0, β=log_2  r  ⇒b_n =α+(n−1)β  b_1 +b_3 +b_5 =3α+(0+2+4)β=6  ⇒α+2β=2   ...(i)  b_1 b_3 b_5 =α(α+2β)(α+4β)=0  α(α+2β)(α+4β)=0  ⇒ α+4β=0 ...(ii)  from(i) and (ii) we get  α=4, β=−1  log_2  a_1 =4 ⇒a_1 =2^4 =16  log_2  r=−1 ⇒r=2^(−1) =(1/2)  ⇒a_n =2^4 ×((1/2))^(n−1) =(1/2^(n−5) )
an=a1rn1bn=log2an=log2(a1rn1)=log2a1+(n1)log2rletα=log2a10,β=log2rbn=α+(n1)βb1+b3+b5=3α+(0+2+4)β=6α+2β=2(i)b1b3b5=α(α+2β)(α+4β)=0α(α+2β)(α+4β)=0α+4β=0(ii)from(i)and(ii)wegetα=4,β=1log2a1=4a1=24=16log2r=1r=21=12an=24×(12)n1=12n5
Commented by Tawa11 last updated on 06/Jan/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *