Menu Close

Given-that-and-are-the-roots-oc-the-equation-ax-2-bx-c-0-Show-that-b-2-ac-2-where-




Question Number 63154 by Rio Michael last updated on 29/Jun/19
Given that α and β are the roots oc the equation ax^2 +bx+c=0  . Show that   λμb^2 = ac(λ + μ)^2 , where (α/β)= (λ/μ).
Giventhatαandβaretherootsoctheequationax2+bx+c=0.Showthatλμb2=ac(λ+μ)2,whereαβ=λμ.
Commented by Prithwish sen last updated on 30/Jun/19
α+β=−(b/a) and αβ =(c/a)  Now  (α+β)^2 =((αβ(α+β)^2 )/(αβ)) = αβ ((α/β) +(β/α) +2 )  (b^2 /a^2 ) = (c/a) ((λ/μ) + (μ/λ) + 2 ) = (c/a) (((λ+μ)^2 )/(λμ))  λμb^2 =ac(λ+μ)^2   proved.
α+β=baandαβ=caNow(α+β)2=αβ(α+β)2αβ=αβ(αβ+βα+2)b2a2=ca(λμ+μλ+2)=ca(λ+μ)2λμλμb2=ac(λ+μ)2proved.
Commented by Rio Michael last updated on 02/Jul/19
cool i think thats correct.
coolithinkthatscorrect.
Commented by Rio Michael last updated on 02/Jul/19
please check my solution.    α+β = −(b/(a  ))  and αβ=(c/a)  −b= a(α +β)  and b^2 = a^2 (α+β)^2 ..........(i)   and  αβ= (c/a)..........(ii)  taking eqn (i) × (ii)  ⇒ αβb^2 = (c/a)×a^2 (α+β)^2        αβ b^2  = ac(α +β)  since  (α/β) =(λ/μ)  then  α=λ and β= μ   and substituting we get.    λμb^2 = ac(λ + μ)^2  proved.       please make more corrections.
pleasecheckmysolution.α+β=baandαβ=cab=a(α+β)andb2=a2(α+β)2.(i)andαβ=ca.(ii)takingeqn(i)×(ii)αβb2=ca×a2(α+β)2αβb2=ac(α+β)sinceαβ=λμthenα=λandβ=μandsubstitutingweget.λμb2=ac(λ+μ)2proved.pleasemakemorecorrections.
Commented by Prithwish sen last updated on 02/Jul/19
I think  (α/λ) = (β/μ) = k (let)  then αβ b^2 = ac(α+β)^2  ⇒ k^2 λμb^2 =k^2 ac(λ+μ)^2
Ithinkαλ=βμ=k(let)thenαβb2=ac(α+β)2k2λμb2=k2ac(λ+μ)2
Commented by Rio Michael last updated on 02/Jul/19
thats also a good idea
thatsalsoagoodidea

Leave a Reply

Your email address will not be published. Required fields are marked *