Menu Close

Given-that-ax-b-is-a-factor-of-x-2-2x-2-1-and-a-is-a-root-of-x-2-2x-1-0-show-that-the-value-of-b-is-1-or-3-2-2-




Question Number 40510 by KMA last updated on 23/Jul/18
Given that ax+b is a factor of x^2   +2x^2 −1 and −a is a root of x^2 +2x  −1=0 show that the value of b is  −1 or 3+2(√(2 .))
$${Given}\:{that}\:{ax}+{b}\:{is}\:{a}\:{factor}\:{of}\:{x}^{\mathrm{2}} \\ $$$$+\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}\:{and}\:−{a}\:{is}\:{a}\:{root}\:{of}\:{x}^{\mathrm{2}} +\mathrm{2}{x} \\ $$$$−\mathrm{1}=\mathrm{0}\:{show}\:{that}\:{the}\:{value}\:{of}\:{b}\:{is} \\ $$$$−\mathrm{1}\:{or}\:\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}\:.} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18
put x=((−b)/a) in x^2 +2x−1 then R=0  (((−b)/a))^2 +2(((−b)/a))−1=0  b^2 −2ab−a^2 =0  b=((−(−2a)±(√(4a^2 +4a^2 )) )/2)  b=a±.a(√2)  put x=(−a) in x^2 +2x−1=0  a^2 −2a−1=0  a=((2±(√(4+4)) )/2)=1±(√2)  b=a+a(√2)    and a−a(√2)   b=1+(√2) +(√2) (1+(√2) )=3+2(√2)   b=1−(√2) +(√2) (1−(√2) )=1−(√2) +(√2) −2=−1
$${put}\:{x}=\frac{−{b}}{{a}}\:{in}\:{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\:{then}\:{R}=\mathrm{0} \\ $$$$\left(\frac{−{b}}{{a}}\right)^{\mathrm{2}} +\mathrm{2}\left(\frac{−{b}}{{a}}\right)−\mathrm{1}=\mathrm{0} \\ $$$${b}^{\mathrm{2}} −\mathrm{2}{ab}−{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${b}=\frac{−\left(−\mathrm{2}{a}\right)\pm\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} }\:}{\mathrm{2}} \\ $$$${b}={a}\pm.{a}\sqrt{\mathrm{2}} \\ $$$${put}\:{x}=\left(−{a}\right)\:{in}\:{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}=\mathrm{0} \\ $$$${a}^{\mathrm{2}} −\mathrm{2}{a}−\mathrm{1}=\mathrm{0} \\ $$$${a}=\frac{\mathrm{2}\pm\sqrt{\mathrm{4}+\mathrm{4}}\:}{\mathrm{2}}=\mathrm{1}\pm\sqrt{\mathrm{2}} \\ $$$${b}={a}+{a}\sqrt{\mathrm{2}}\:\:\:\:{and}\:{a}−{a}\sqrt{\mathrm{2}}\: \\ $$$${b}=\mathrm{1}+\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{2}}\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\:\right)=\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\: \\ $$$${b}=\mathrm{1}−\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{2}}\:\left(\mathrm{1}−\sqrt{\mathrm{2}}\:\right)=\mathrm{1}−\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{2}}\:−\mathrm{2}=−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *