Menu Close

Given-that-ax-b-is-a-factor-of-x-2-2x-2-1-and-a-is-a-root-of-x-2-2x-1-0-show-that-the-value-of-b-is-1-or-3-2-2-




Question Number 40510 by KMA last updated on 23/Jul/18
Given that ax+b is a factor of x^2   +2x^2 −1 and −a is a root of x^2 +2x  −1=0 show that the value of b is  −1 or 3+2(√(2 .))
Giventhatax+bisafactorofx2+2x21andaisarootofx2+2x1=0showthatthevalueofbis1or3+22.
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18
put x=((−b)/a) in x^2 +2x−1 then R=0  (((−b)/a))^2 +2(((−b)/a))−1=0  b^2 −2ab−a^2 =0  b=((−(−2a)±(√(4a^2 +4a^2 )) )/2)  b=a±.a(√2)  put x=(−a) in x^2 +2x−1=0  a^2 −2a−1=0  a=((2±(√(4+4)) )/2)=1±(√2)  b=a+a(√2)    and a−a(√2)   b=1+(√2) +(√2) (1+(√2) )=3+2(√2)   b=1−(√2) +(√2) (1−(√2) )=1−(√2) +(√2) −2=−1
putx=bainx2+2x1thenR=0(ba)2+2(ba)1=0b22aba2=0b=(2a)±4a2+4a22b=a±.a2putx=(a)inx2+2x1=0a22a1=0a=2±4+42=1±2b=a+a2andaa2b=1+2+2(1+2)=3+22b=12+2(12)=12+22=1

Leave a Reply

Your email address will not be published. Required fields are marked *