Menu Close

Given-that-e-i-npi-n-N-show-that-1-2-1-2i-sin-2-1-n-2-n-cos-n-1-2-e-1-2-in-




Question Number 124595 by physicstutes last updated on 04/Dec/20
Given that  ω = e^(iθ) , θ≠ nπ, n ∈ N  show that    (1) ((ω^2 −1)/ω) = 2i sin θ   (2) (1 + ω)^n  = 2^n cos^n ((1/2)θ)e^((1/2)(inθ))
Giventhatω=eiθ,θnπ,nNshowthat(1)ω21ω=2isinθ(2)(1+ω)n=2ncosn(12θ)e12(inθ)
Answered by Ar Brandon last updated on 04/Dec/20
f(ω)=((ω^2 −1)/ω)=((e^(2iθ) −1)/e^(iθ) )=e^(iθ) −e^(−iθ)            =(cosθ+isinθ)−(cos(−θ)+isin(−θ))           =(cosθ+isinθ)−(cosθ−isinθ)           =2isinθ
f(ω)=ω21ω=e2iθ1eiθ=eiθeiθ=(cosθ+isinθ)(cos(θ)+isin(θ))=(cosθ+isinθ)(cosθisinθ)=2isinθ
Commented by physicstutes last updated on 04/Dec/20
thats great
thatsgreat
Answered by mnjuly1970 last updated on 04/Dec/20
1:ω^2 −1=(cos(2θ)+isin(2θ))−1=2isin(θ)cos(θ)−2sin^2 (θ)     =2isin(θ)[cos(θ)+isin(θ)]   ⇒((ω^2 −1)/ω)=2isin(θ)     corallary :Ω=∫_0 ^(π/2) ln(Im(((ω^2 −1)/(2w))))dθ=−(π/2)ln(2)✓
1:ω21=(cos(2θ)+isin(2θ))1=2isin(θ)cos(θ)2sin2(θ)=2isin(θ)[cos(θ)+isin(θ)]ω21ω=2isin(θ)corallary:Ω=0π2ln(Im(ω212w))dθ=π2ln(2)
Answered by Ar Brandon last updated on 04/Dec/20
f(ω)=(1+ω)^n =(1+cosθ+isinθ)^n            =(2cos^2 (θ/2)+2isin(θ/2)cos(θ/2))^n            =[2cos(θ/2)(cos(θ/2)+isin(θ/2))]^n            =2^n cos^n (θ/2)e^(i((nθ)/2))
f(ω)=(1+ω)n=(1+cosθ+isinθ)n=(2cos2θ2+2isinθ2cosθ2)n=[2cosθ2(cosθ2+isinθ2)]n=2ncosnθ2einθ2
Commented by Ar Brandon last updated on 04/Dec/20
1=cos^2 (θ/2)+sin^2 (θ/2)  cosθ=cos^2 (θ/2)−sin^2 (θ/2)  sinθ=2sin(θ/2)cos(θ/2)  cos(θ/2)+isin(θ/2)=e^(i(θ/2))
1=cos2θ2+sin2θ2cosθ=cos2θ2sin2θ2sinθ=2sinθ2cosθ2cosθ2+isinθ2=eiθ2
Answered by mnjuly1970 last updated on 04/Dec/20
2.(1+ω)^n =(1+cos(θ)+isin(θ))^n        =(2cos^2 ((θ/2))+2isin((θ/2))cos((θ/2)))^n   =2^n (cos^n ((θ/2)))(cos((θ/2))+isin((θ/2)))^n   =2^n cos^n ((θ/2))e^(i(((nθ)/2)))  ✓
2.(1+ω)n=(1+cos(θ)+isin(θ))n=(2cos2(θ2)+2isin(θ2)cos(θ2))n=2n(cosn(θ2))(cos(θ2)+isin(θ2))n=2ncosn(θ2)ei(nθ2)

Leave a Reply

Your email address will not be published. Required fields are marked *