Question Number 93368 by Rio Michael last updated on 12/May/20
$$\mathrm{given}\:\mathrm{that}\:{f}\left({r}\right)=\:\:\mathrm{sin}\:\left(\mathrm{1}\:+\:\mathrm{2}{r}\right)\theta \\ $$$$\mathrm{show}\:\mathrm{that}\:{f}\left({r}\right)−{f}\left({r}−\mathrm{1}\right)\:=\:\mathrm{2}\:\mathrm{cos}\:\mathrm{2}{r}\:\theta\:\mathrm{sin}\:\theta \\ $$$$\mathrm{hence}\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\:\mathrm{cos}\:\mathrm{2}{r}\:\theta\:\mathrm{sin}\:\theta\:\:=\:\mathrm{cos}\:\left({n}\:+\mathrm{1}\right)\theta\:\mathrm{sin}\:{n}\theta \\ $$
Answered by mr W last updated on 12/May/20
$${f}\left({r}\right)=\mathrm{sin}\:\left(\mathrm{1}+\mathrm{2}{r}\right)\theta \\ $$$${f}\left({r}−\mathrm{1}\right)=\mathrm{sin}\:\left(\mathrm{2}{r}−\mathrm{1}\right)\theta=−\mathrm{sin}\:\left(\mathrm{1}−\mathrm{2}{r}\right)\theta \\ $$$${f}\left({r}\right)−{f}\left({r}−\mathrm{1}\right)=\mathrm{sin}\:\left(\mathrm{1}+\mathrm{2}{r}\right)\theta+\mathrm{sin}\:\left(\mathrm{1}−\mathrm{2}{r}\right)\theta \\ $$$$=\mathrm{sin}\:\theta\:\mathrm{cos}\:\mathrm{2}{r}\theta+\mathrm{cos}\:\theta\:\mathrm{sin}\:\mathrm{2}{r}\theta+\mathrm{sin}\:\theta\:\mathrm{cos}\:\mathrm{2}{r}\theta−\mathrm{cos}\:\theta\:\mathrm{sin}\:\mathrm{2}{r}\theta \\ $$$$=\mathrm{2}\:\mathrm{cos}\:\mathrm{2}{r}\theta\:\mathrm{sin}\:\theta \\ $$$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}\:\mathrm{2}{r}\theta\:\mathrm{sin}\:\theta=\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}}\left\{{f}\left({r}\right)−{f}\left({r}−\mathrm{1}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{{f}\left({n}\right)−{f}\left(\mathrm{0}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{sin}\:\left(\mathrm{1}+\mathrm{2}{n}\right)\theta−\mathrm{sin}\:\theta\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{sin}\:\theta\:\mathrm{cos}\:\mathrm{2}{n}\theta+\mathrm{cos}\:\theta\:\mathrm{sin}\:\mathrm{2}{n}\theta−\mathrm{sin}\:\theta\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{−\mathrm{sin}\:\theta\:\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{n}\theta+\mathrm{2}\:\mathrm{cos}\:\theta\:\mathrm{sin}\:{n}\theta\:\mathrm{cos}\:{n}\theta\right\} \\ $$$$=\left\{−\mathrm{sin}\:\theta\:\mathrm{sin}\:{n}\theta+\mathrm{cos}\:\theta\:\mathrm{cos}\:{n}\theta\:\right\}\mathrm{sin}\:{n}\theta \\ $$$$=\mathrm{cos}\:\left({n}+\mathrm{1}\right)\theta\:\mathrm{sin}\:{n}\theta \\ $$
Commented by Rio Michael last updated on 12/May/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$