Menu Close

given-that-f-r-sin-1-2r-show-that-f-r-f-r-1-2-cos-2r-sin-hence-show-that-r-1-n-cos-2r-sin-cos-n-1-sin-n-




Question Number 93368 by Rio Michael last updated on 12/May/20
given that f(r)=  sin (1 + 2r)θ  show that f(r)−f(r−1) = 2 cos 2r θ sin θ  hence show that      Σ_(r=1) ^n  cos 2r θ sin θ  = cos (n +1)θ sin nθ
giventhatf(r)=sin(1+2r)θshowthatf(r)f(r1)=2cos2rθsinθhenceshowthatnr=1cos2rθsinθ=cos(n+1)θsinnθ
Answered by mr W last updated on 12/May/20
f(r)=sin (1+2r)θ  f(r−1)=sin (2r−1)θ=−sin (1−2r)θ  f(r)−f(r−1)=sin (1+2r)θ+sin (1−2r)θ  =sin θ cos 2rθ+cos θ sin 2rθ+sin θ cos 2rθ−cos θ sin 2rθ  =2 cos 2rθ sin θ  Σ_(r=1) ^n cos 2rθ sin θ=Σ_(r=1) ^n (1/2){f(r)−f(r−1)}  =(1/2){f(n)−f(0)}  =(1/2){sin (1+2n)θ−sin θ}  =(1/2){sin θ cos 2nθ+cos θ sin 2nθ−sin θ}  =(1/2){−sin θ 2 sin^2  nθ+2 cos θ sin nθ cos nθ}  ={−sin θ sin nθ+cos θ cos nθ }sin nθ  =cos (n+1)θ sin nθ
f(r)=sin(1+2r)θf(r1)=sin(2r1)θ=sin(12r)θf(r)f(r1)=sin(1+2r)θ+sin(12r)θ=sinθcos2rθ+cosθsin2rθ+sinθcos2rθcosθsin2rθ=2cos2rθsinθnr=1cos2rθsinθ=nr=112{f(r)f(r1)}=12{f(n)f(0)}=12{sin(1+2n)θsinθ}=12{sinθcos2nθ+cosθsin2nθsinθ}=12{sinθ2sin2nθ+2cosθsinnθcosnθ}={sinθsinnθ+cosθcosnθ}sinnθ=cos(n+1)θsinnθ
Commented by Rio Michael last updated on 12/May/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *