Menu Close

Given-that-f-x-1-x-Find-a-D-f-for-the-arranged-form-of-f-x-b-fg-if-fh-g-x-and-h-x-3x-2-4-c-A-x-1-x-x-1-x-2-x-0-find-A-1-




Question Number 42730 by Rio Michael last updated on 01/Sep/18
Given that f(x) = (√(1−x)) Find  a) D_f  for the arranged form of f(x)  b) fg if fh= g(x) and h(x)= 3x^2 −4  c) A(x)=  { (((√(1−x)) , x≠ 1)),((x^2 ,x≠0)) :}  find A^(−1) .
$${Given}\:{that}\:{f}\left({x}\right)\:=\:\sqrt{\mathrm{1}−{x}}\:{Find} \\ $$$$\left.{a}\right)\:{D}_{{f}} \:{for}\:{the}\:{arranged}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.{b}\right)\:{fg}\:{if}\:{fh}=\:{g}\left({x}\right)\:{and}\:{h}\left({x}\right)=\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4} \\ $$$$\left.{c}\right)\:{A}\left({x}\right)=\:\begin{cases}{\sqrt{\mathrm{1}−{x}}\:,\:{x}\neq\:\mathrm{1}}\\{{x}^{\mathrm{2}} ,{x}\neq\mathrm{0}}\end{cases} \\ $$$${find}\:{A}^{−\mathrm{1}} . \\ $$$$ \\ $$$$ \\ $$
Commented by Joel578 last updated on 03/Sep/18
For (c)  if x = −1, what function A(x) should be defined?  A(x) = (√(1 − x))  or A(x) = x^2  ?
$$\mathrm{For}\:\left({c}\right) \\ $$$$\mathrm{if}\:{x}\:=\:−\mathrm{1},\:\mathrm{what}\:\mathrm{function}\:{A}\left({x}\right)\:\mathrm{should}\:\mathrm{be}\:\mathrm{defined}? \\ $$$${A}\left({x}\right)\:=\:\sqrt{\mathrm{1}\:−\:{x}}\:\:\mathrm{or}\:{A}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:? \\ $$
Answered by Joel578 last updated on 02/Sep/18
(a)  D_f  = {x ∈ R : x ≤ 1 }    (b)  (f . h)(x) = (3x^2  − 4)(√(1−x)) = g(x)   (f . g)(x) = ((√(1 − x)))^2 (3x^2  − 4)                         = (1 − x)(3x^2  − 4)                         = −3x^3  +  3x^2  + 4x − 4
$$\left({a}\right) \\ $$$${D}_{{f}} \:=\:\left\{{x}\:\in\:\mathbb{R}\::\:{x}\:\leqslant\:\mathrm{1}\:\right\} \\ $$$$ \\ $$$$\left({b}\right) \\ $$$$\left({f}\:.\:{h}\right)\left({x}\right)\:=\:\left(\mathrm{3}{x}^{\mathrm{2}} \:−\:\mathrm{4}\right)\sqrt{\mathrm{1}−{x}}\:=\:{g}\left({x}\right) \\ $$$$\:\left({f}\:.\:{g}\right)\left({x}\right)\:=\:\left(\sqrt{\mathrm{1}\:−\:{x}}\right)^{\mathrm{2}} \left(\mathrm{3}{x}^{\mathrm{2}} \:−\:\mathrm{4}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\mathrm{1}\:−\:{x}\right)\left(\mathrm{3}{x}^{\mathrm{2}} \:−\:\mathrm{4}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\mathrm{3}{x}^{\mathrm{3}} \:+\:\:\mathrm{3}{x}^{\mathrm{2}} \:+\:\mathrm{4}{x}\:−\:\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *