Menu Close

Given-that-f-x-2-x-2-1-a-Express-f-x-in-partial-fraction-b-Evaluate-3-5-f-x-dx-




Question Number 65166 by Rio Michael last updated on 25/Jul/19
Given that  f(x) = (2/(x^2 −1))  a) Express f(x) in partial fraction.  b.Evaluate  ∫_3 ^5 f (x) dx
Giventhatf(x)=2x21a)Expressf(x)inpartialfraction.b.Evaluate35f(x)dx
Commented by mathmax by abdo last updated on 26/Jul/19
a) we have f(x) =(2/((x−1)(x+1))) =(1/(x−1))−(1/(x+1))  b) ∫_3 ^5 f(x)dx =∫_3 ^5 ((1/(x−1))−(1/(x+1)))dx =[ln∣x−1∣−ln∣x+1∣]_3 ^5   =[ln∣((x−1)/(x+1))∣]_3 ^5  =ln((4/6))−ln((2/4)) =ln((2/3))−ln((1/2))  =ln(2)−ln(3)+ln2 =2ln2 −ln(3) .
a)wehavef(x)=2(x1)(x+1)=1x11x+1b)35f(x)dx=35(1x11x+1)dx=[lnx1lnx+1]35=[lnx1x+1]35=ln(46)ln(24)=ln(23)ln(12)=ln(2)ln(3)+ln2=2ln2ln(3).
Answered by mr W last updated on 25/Jul/19
f(x)=(2/(x^2 −1))=(1/(x−1))−(1/(x+1))  ∫_3 ^5 f(x)dx  =∫_3 ^5 ((1/(x−1))−(1/(x+1)))dx  =[ln ((x−1)/(x+1))]_3 ^5   =ln ((5−1)/(5+1))−ln ((3−1)/(3+1))  =ln (2/3)−ln (1/2)  =ln (4/3)
f(x)=2x21=1x11x+135f(x)dx=35(1x11x+1)dx=[lnx1x+1]35=ln515+1ln313+1=ln23ln12=ln43
Commented by Rio Michael last updated on 25/Jul/19
thanks
thanks
Commented by Rio Michael last updated on 25/Jul/19
any explanation on how   ln((x−1)/(x+1))  s obtained
anyexplanationonhowlnx1x+1sobtained
Commented by MJS last updated on 25/Jul/19
∫(x−1)dx=ln (x−1)  ∫(x+1)dx=ln (x+1)  ln a −ln b =ln (a/b)  e^(ln a −ln b) =e^(ln a) ×e^(−ln a) =(e^(ln a) /e^(ln b) )=(a/b) ⇒  ⇒ ln e^(ln a −ln b)  =ln a −ln b =ln (a/b)
(x1)dx=ln(x1)(x+1)dx=ln(x+1)lnalnb=lnabelnalnb=elna×elna=elnaelnb=ablnelnalnb=lnalnb=lnab
Commented by mr W last updated on 25/Jul/19
∫((1/(x−1))−(1/(x+1)))dx  =∫(1/(x−1))dx−∫(1/(x+1))dx  =∫(1/(x−1))d(x−1)−∫(1/(x+1))d(x+1)  =ln (x−1)−ln (x+1)  =ln ((x−1)/(x+1))
(1x11x+1)dx=1x1dx1x+1dx=1x1d(x1)1x+1d(x+1)=ln(x1)ln(x+1)=lnx1x+1
Commented by Rio Michael last updated on 25/Jul/19
thanks you guys so much
thanksyouguyssomuch
Answered by meme last updated on 25/Jul/19
a) f(x)=(2/((x−1)(x+1)))=(1/((x−1)))−(1/((x+1)))      b)∫_3 ^5   f(x) dx=∫_3 ^5   (1/((x−1))) dx −∫_3 ^5   (1/((x+1))) dx                      =[ln(x−1)]_3 ^5 −[ln(x+1)]_3 ^5   =ln4−ln2−ln6+ln4  =4ln2−ln2−ln6  =3ln2−ln6  =ln(4/3)
a)f(x)=2(x1)(x+1)=1(x1)1(x+1)b)35f(x)dx=351(x1)dx351(x+1)dx=[ln(x1)]35[ln(x+1)]35=ln4ln2ln6+ln4=4ln2ln2ln6=3ln2ln6=ln43

Leave a Reply

Your email address will not be published. Required fields are marked *