Menu Close

Given-that-f-x-3-2x-3-4-x-4-on-the-interval-3-2-lt-x-lt-4-Find-the-a-Maximum-value-of-f-x-b-The-value-of-x-that-gives-the-maximum-in-a-




Question Number 110669 by Aina Samuel Temidayo last updated on 30/Aug/20
Given that f(x)=(3+2x)^3 (4−x)^4  on  the interval −(3/2)<x<4. Find the  (a) Maximum value of f(x)  (b) The value of x that gives the  maximum in (a)
Giventhatf(x)=(3+2x)3(4x)4ontheinterval32<x<4.Findthe(a)Maximumvalueoff(x)(b)Thevalueofxthatgivesthemaximumin(a)
Commented by Her_Majesty last updated on 30/Aug/20
(3+2x)^3 (4−x^4 ) or rather (3+2x)^3 (4−x)^4 ?
(3+2x)3(4x4)orrather(3+2x)3(4x)4?
Commented by Aina Samuel Temidayo last updated on 30/Aug/20
You are correct. I have changed it.  Thanks.
Youarecorrect.Ihavechangedit.Thanks.
Answered by Her_Majesty last updated on 30/Aug/20
f′(x)=6(3+2x)^2 (4−x)^4 −4(4−x)^3 (3+2x)^3 =  =2(3+2x)^2 (4−x)^3 (3(4−x)−2(3+2x))=  =2(3+2x)^2 (4−x)^3 (6−7x)  f′(x)=0 ⇒ x_(1,2) =−(3/2)∧x_(3,4,5) =4∧x_6 =(6/7)  now obviously f(−(3/2))=f(4)=0 but  f((6/7))=((2^4 3^3 11^7 )/7^7 )=((8418457872)/(823543))≈10222.2
f(x)=6(3+2x)2(4x)44(4x)3(3+2x)3==2(3+2x)2(4x)3(3(4x)2(3+2x))==2(3+2x)2(4x)3(67x)f(x)=0x1,2=32x3,4,5=4x6=67nowobviouslyf(32)=f(4)=0butf(67)=243311777=841845787282354310222.2
Answered by 1549442205PVT last updated on 30/Aug/20
  Apply Cauchy′s inequality we have  (3+2x)^3 (4−x)^4 =(((3+2x)^3 (6−1.5x)^4 )/(1.5^4 ))(1)  Apply Cauchy′s inequality we have  7^7 (√((3+2x)(3+2x)(3+2x)(6−1.5x)(6−1.5x)(7−1.5x)(6−1.5x)))  ≤(3+2x)+(3+2x)+(3+2x)+(6−1.5x)+(6−1.5x)+(7−1.5x)+(6−1.5x)  =33 (2)  ⇒(3+2x)^3 (6−1.5x)^4 ≤(((33)/7))^7   (((3+2x)^3 (6−1.5x)^4 )/(1.5^4 ))≤((33^7 )/(7^7 .1.5^4 ))  The equality ocurrs if and only if   3+2x=6−1.5x⇔3.5x=3⇔x=(6/7)  Thus f(x) has greatest value equal to  ((33^7 )/(7^7 .1.5^4 )) when x=(6/7)
ApplyCauchysinequalitywehave(3+2x)3(4x)4=(3+2x)3(61.5x)41.54(1)ApplyCauchysinequalitywehave77(3+2x)(3+2x)(3+2x)(61.5x)(61.5x)(71.5x)(61.5x)(3+2x)+(3+2x)+(3+2x)+(61.5x)+(61.5x)+(71.5x)+(61.5x)=33(2)(3+2x)3(61.5x)4(337)7(3+2x)3(61.5x)41.5433777.1.54Theequalityocurrsifandonlyif3+2x=61.5x3.5x=3x=67Thusf(x)hasgreatestvalueequalto33777.1.54whenx=67
Commented by Aina Samuel Temidayo last updated on 30/Aug/20
Yes. Both are correct.
Yes.Botharecorrect.

Leave a Reply

Your email address will not be published. Required fields are marked *