Menu Close

Given-that-f-x-3-x-2-12x-41-find-an-explicit-expression-for-f-x-please-I-need-the-procedure-




Question Number 119391 by Don08q last updated on 24/Oct/20
 Given that f(x−3) = x^2  − 12x + 41   find an explicit expression for f(x)     please I  need the procedure
$$\:\mathrm{Given}\:\mathrm{that}\:{f}\left({x}−\mathrm{3}\right)\:=\:{x}^{\mathrm{2}} \:−\:\mathrm{12}{x}\:+\:\mathrm{41} \\ $$$$\:\mathrm{find}\:\mathrm{an}\:\mathrm{explicit}\:\mathrm{expression}\:\mathrm{for}\:{f}\left({x}\right) \\ $$$$ \\ $$$$\:{please}\:{I}\:\:{need}\:{the}\:{procedure} \\ $$
Answered by bemath last updated on 24/Oct/20
let x−3 = t , x = t+3   f(t) = (t+3)^2 −12(t+3)+41  f(t)=t^2 +6t+9−12t−36+41  f(t)=t^2 −6t+14 , replace t by x   f(x)=x^2 −6x+14
$${let}\:{x}−\mathrm{3}\:=\:{t}\:,\:{x}\:=\:{t}+\mathrm{3}\: \\ $$$${f}\left({t}\right)\:=\:\left({t}+\mathrm{3}\right)^{\mathrm{2}} −\mathrm{12}\left({t}+\mathrm{3}\right)+\mathrm{41} \\ $$$${f}\left({t}\right)={t}^{\mathrm{2}} +\mathrm{6}{t}+\mathrm{9}−\mathrm{12}{t}−\mathrm{36}+\mathrm{41} \\ $$$${f}\left({t}\right)={t}^{\mathrm{2}} −\mathrm{6}{t}+\mathrm{14}\:,\:{replace}\:{t}\:{by}\:{x}\: \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{14} \\ $$
Commented by Don08q last updated on 24/Oct/20
Thanks very much Sir
$${Thanks}\:{very}\:{much}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *