Menu Close

Given-that-f-x-is-a-cubic-function-and-f-x-x-3-x-2-4-5x-7-a-find-one-factor-of-f-x-b-find-d-2-y-dx-2-for-f-x-c-hence-Evaluate-y-0-f-x-




Question Number 39416 by Rio Mike last updated on 06/Jul/18
Given that f(x) is a cubic function  and f(x) = x^3   − (x^2 /4) + 5x − 7  a) find one factor of f(x)  b) find  (d^2 y/dx^2 ) for f(x)  c) hence Evaluate  y = ∫_0 ^∞ f(x).
Giventhatf(x)isacubicfunctionandf(x)=x3x24+5x7a)findonefactoroff(x)b)findd2ydx2forf(x)c)henceEvaluatey=0f(x).
Answered by MJS last updated on 06/Jul/18
(b) (d^2 y/dx^2 )[f(x)]=f′′(x)=6x−(1/2)  (c) ∫f(x)dx=(1/4)x^4 −(1/(12))x^3 +(5/2)x^2 −7x+C ⇒        ∫_0 ^∞ f(x)dx=+∞  (a) what are we allowed to use?       approximation procedure with a calculator       gives x≈1.15710       Cardano:       x^3 −(1/4)x^2 +5x−7=0       z=x+(1/(12))       z^3 +((239)/(48))z−((5689)/(864))=0       u=(1/(12))((5689+24(√(79890))))^(1/3) ; v=(1/(12))((5689−24(√(79890))))^(1/3)        z_1 =u+v; x_1 =(1/(12))+u+v≈1.15710       z_2 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v       z_2 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v
(b)d2ydx2[f(x)]=f(x)=6x12(c)f(x)dx=14x4112x3+52x27x+C0f(x)dx=+(a)whatareweallowedtouse?approximationprocedurewithacalculatorgivesx1.15710Cardano:x314x2+5x7=0z=x+112z3+23948z5689864=0u=1125689+24798903;v=112568924798903z1=u+v;x1=112+u+v1.15710z2=(12+32i)u+(1232i)vz2=(1232i)u+(12+32i)v

Leave a Reply

Your email address will not be published. Required fields are marked *