Menu Close

Given-that-f-x-x-2x-1-1-t-4-dt-a-state-its-domain-b-is-f-x-even-or-odd-




Question Number 167520 by MikeH last updated on 18/Mar/22
Given that f(x) = ∫_x ^(2x) (1/( (√(1+t^4 ))))dt  (a) state its domain  (b) is f(x) even or odd?
Giventhatf(x)=x2x11+t4dt(a)stateitsdomain(b)isf(x)evenorodd?
Answered by aleks041103 last updated on 18/Mar/22
(a) obv. f(x) is defined for ∀x∈R.  (b) f(−x)=∫_(−x) ^(−2x) (dt/( (√(1+t^4 ))))=  =−∫_(−x) ^(−2x) ((d(−t))/( (√(1+(−t)^4 ))))=−∫_x ^( 2x) (dt/( (√(1+t^4 ))))=−f(x)  ⇒f(−x)=−f(x)  ⇒f(x) is odd.
(a)obv.f(x)isdefinedforxR.(b)f(x)=x2xdt1+t4==x2xd(t)1+(t)4=x2xdt1+t4=f(x)f(x)=f(x)f(x)isodd.

Leave a Reply

Your email address will not be published. Required fields are marked *