Menu Close

Given-that-f-x-x-3-x-2-ax-b-and-g-x-2x-3-9x-2-3ax-b-have-a-common-factor-x-1-where-a-and-b-are-constands-Find-the-values-of-a-and-b-hence-find-other-factors-of-f-x-




Question Number 35419 by Rio Mike last updated on 18/May/18
Given that   f(x)= x^3 −x^2 +ax+b and   g(x)= 2x^3 −9x^2 −3ax + b have a  common factor (x−1) where a and  b are constands . Find the values  of a and b hence find other factors  of f(x)
$${Given}\:{that}\: \\ $$$${f}\left({x}\right)=\:{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{ax}+{b}\:{and}\: \\ $$$${g}\left({x}\right)=\:\mathrm{2}{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}} −\mathrm{3}{ax}\:+\:{b}\:{have}\:{a} \\ $$$${common}\:{factor}\:\left({x}−\mathrm{1}\right)\:{where}\:{a}\:{and} \\ $$$${b}\:{are}\:{constands}\:.\:{Find}\:{the}\:{values} \\ $$$${of}\:{a}\:{and}\:{b}\:{hence}\:{find}\:{other}\:{factors} \\ $$$${of}\:{f}\left({x}\right) \\ $$
Answered by ajfour last updated on 18/May/18
a+b=0  b−3a=7  ⇒  a=((−7)/4) ,  b=(7/4)  f(x)=x^2 (x−1)−(7/4)(x−1)   f(x)  =(x+((√7)/2))(x−1)(x−((√7)/2))
$${a}+{b}=\mathrm{0} \\ $$$${b}−\mathrm{3}{a}=\mathrm{7} \\ $$$$\Rightarrow\:\:{a}=\frac{−\mathrm{7}}{\mathrm{4}}\:,\:\:{b}=\frac{\mathrm{7}}{\mathrm{4}} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)−\frac{\mathrm{7}}{\mathrm{4}}\left({x}−\mathrm{1}\right) \\ $$$$\:{f}\left({x}\right)\:\:=\left({x}+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\right)\left({x}−\mathrm{1}\right)\left({x}−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *