Menu Close

Given-that-I-n-0-1-x-1-x-n-dx-n-Z-show-that-n-2-I-n-nI-n-1-n-1-




Question Number 127090 by physicstutes last updated on 26/Dec/20
Given that     I_n  = ∫_0 ^1 x(1−x)^n dx , n ∈ Z^+    show that  (n+2)I_n  = nI_(n−1) , n ≥ 1.
GiventhatIn=10x(1x)ndx,nZ+showthat(n+2)In=nIn1,n1.
Answered by Dwaipayan Shikari last updated on 26/Dec/20
∫_0 ^1 x(1−x)^n dx  =((Γ(2)Γ(n+1))/(Γ(n+3)))=((1!n!)/((n+2)!))=(1/((n+1)(n+2)))  I_n =(1/((n+1)(n+2)))⇒(n+2)I_n =(1/((n+1)))  I_(n−1) =(1/(n(n+1)))=(1/n)(n+2)I_n ⇒I_n (n+2)=nI_(n−1)
01x(1x)ndx=Γ(2)Γ(n+1)Γ(n+3)=1!n!(n+2)!=1(n+1)(n+2)In=1(n+1)(n+2)(n+2)In=1(n+1)In1=1n(n+1)=1n(n+2)InIn(n+2)=nIn1
Answered by Olaf last updated on 26/Dec/20
I_n  = ∫_0 ^1 x(1−x)^n dx, n∈Z^+   Let u = 1−x  I_n  = ∫_0 ^1 (1−u)u^n du = (1/(n+1))−(1/(n+2)) = (1/((n+1)(n+2)))  ⇒ I_(n−1)  = (1/(n(n+1))), n≥1  and (I_n /I_(n−1) ) = (n/(n+2))
In=01x(1x)ndx,nZ+Letu=1xIn=01(1u)undu=1n+11n+2=1(n+1)(n+2)In1=1n(n+1),n1andInIn1=nn+2
Commented by physicstutes last updated on 26/Dec/20
thanks sirs, but how about a method using  integration by parts  by letting u = x and dv = (1−x)^n dx
thankssirs,buthowaboutamethodusingintegrationbypartsbylettingu=xanddv=(1x)ndx
Answered by Ar Brandon last updated on 26/Dec/20
I_n =∫_0 ^1 x(1−x)^n dx, n∈Z^+    { ((u(x)=x)),((v′(x)=(1−x)^n )) :} ⇒  { ((u′(x)=1)),((v(x)=−(((1−x)^(n+1) )/(n+1)))) :}  I_n =u(x)∙v(x)−∫v(x)∙u′(x)dx       =[−((x(1−x)^(n+1) )/(n+1))]_0 ^1 +∫_0 ^1 (((1−x)^(n+1) )/(n+1))dx       =−[(((1−x)^(n+2) )/((n+1)(n+2)))]_0 ^1 =(1/((n+1)(n+2)))  I_(n−1) =(1/(n(n+1))) ⇒ (I_n /I_(n−1) )=(n/(n+2))  (n+2)I_n =nI_(n−1)
In=01x(1x)ndx,nZ+{u(x)=xv(x)=(1x)n{u(x)=1v(x)=(1x)n+1n+1In=u(x)v(x)v(x)u(x)dx=[x(1x)n+1n+1]01+01(1x)n+1n+1dx=[(1x)n+2(n+1)(n+2)]01=1(n+1)(n+2)In1=1n(n+1)InIn1=nn+2(n+2)In=nIn1
Commented by Ar Brandon last updated on 27/Dec/20
De nada !
Denada!
Commented by physicstutes last updated on 27/Dec/20
excellento! gracias
excellento!gracias
Answered by Ar Brandon last updated on 26/Dec/20
I_n =∫_0 ^1 x(1−x)^n dx, n∈Z^+    { ((u(x)=(1−x)^n )),((v′(x)=x)) :} ⇒  { ((u′(x)=−n(1−x)^(n−1) )),((v(x)=(x^2 /2))) :}  I_n =[(x^2 /2)∙(1−x)^n ]_0 ^1 +(n/2)∫_0 ^1 x^2 (1−x)^(n−1) dx       =(n/2)∫_0 ^1 {−x(1−x−1)(1−x)^(n−1) dx       =(n/2)∫_0 ^1 {−x(1−x)(1−x)^(n−1) +x(1−x)^(n−1) }dx       =(n/2)∫_0 ^1 {−x(1−x)^n +x(1−x)^(n−1) }dx       =(n/2){−I_n +I_(n−1) } ⇒ (1+(n/2))I_n =(n/2)I_(n−1)   (n+2)I_n =nI_(n−1)
In=01x(1x)ndx,nZ+{u(x)=(1x)nv(x)=x{u(x)=n(1x)n1v(x)=x22In=[x22(1x)n]01+n201x2(1x)n1dx=n201{x(1x1)(1x)n1dx=n201{x(1x)(1x)n1+x(1x)n1}dx=n201{x(1x)n+x(1x)n1}dx=n2{In+In1}(1+n2)In=n2In1(n+2)In=nIn1

Leave a Reply

Your email address will not be published. Required fields are marked *