Question Number 127090 by physicstutes last updated on 26/Dec/20

Answered by Dwaipayan Shikari last updated on 26/Dec/20

Answered by Olaf last updated on 26/Dec/20

Commented by physicstutes last updated on 26/Dec/20

Answered by Ar Brandon last updated on 26/Dec/20
![I_n =∫_0 ^1 x(1−x)^n dx, n∈Z^+ { ((u(x)=x)),((v′(x)=(1−x)^n )) :} ⇒ { ((u′(x)=1)),((v(x)=−(((1−x)^(n+1) )/(n+1)))) :} I_n =u(x)∙v(x)−∫v(x)∙u′(x)dx =[−((x(1−x)^(n+1) )/(n+1))]_0 ^1 +∫_0 ^1 (((1−x)^(n+1) )/(n+1))dx =−[(((1−x)^(n+2) )/((n+1)(n+2)))]_0 ^1 =(1/((n+1)(n+2))) I_(n−1) =(1/(n(n+1))) ⇒ (I_n /I_(n−1) )=(n/(n+2)) (n+2)I_n =nI_(n−1)](https://www.tinkutara.com/question/Q127102.png)
Commented by Ar Brandon last updated on 27/Dec/20

Commented by physicstutes last updated on 27/Dec/20

Answered by Ar Brandon last updated on 26/Dec/20
![I_n =∫_0 ^1 x(1−x)^n dx, n∈Z^+ { ((u(x)=(1−x)^n )),((v′(x)=x)) :} ⇒ { ((u′(x)=−n(1−x)^(n−1) )),((v(x)=(x^2 /2))) :} I_n =[(x^2 /2)∙(1−x)^n ]_0 ^1 +(n/2)∫_0 ^1 x^2 (1−x)^(n−1) dx =(n/2)∫_0 ^1 {−x(1−x−1)(1−x)^(n−1) dx =(n/2)∫_0 ^1 {−x(1−x)(1−x)^(n−1) +x(1−x)^(n−1) }dx =(n/2)∫_0 ^1 {−x(1−x)^n +x(1−x)^(n−1) }dx =(n/2){−I_n +I_(n−1) } ⇒ (1+(n/2))I_n =(n/2)I_(n−1) (n+2)I_n =nI_(n−1)](https://www.tinkutara.com/question/Q127105.png)