Menu Close

Given-that-I-n-0-1-x-1-x-n-dx-obtain-a-reduction-formulae-for-I-n-in-terms-of-I-n-2-Hence-evaluate-0-1-x-1-x-5-dx-




Question Number 122166 by physicstutes last updated on 14/Nov/20
Given that I_n  = ∫_0 ^1 x(1−x)^n dx  obtain a reduction formulae for I_(n )  in terms  of I_(n−2)  Hence evaluate  ∫_0 ^1 x(1−x)^5 dx.
GiventhatIn=10x(1x)ndxobtainareductionformulaeforInintermsofIn2Henceevaluate10x(1x)5dx.
Answered by liberty last updated on 14/Nov/20
 ∫_0 ^1  x(1−x)^5  dx = −((x(1−x)^6 )/6)]_0 ^1  + ∫_0 ^1  (((1−x)^6 )/6) dx   = −(1/(42)) [ (1−x)]_0 ^1  = (1/(42))
10x(1x)5dx=x(1x)66]01+10(1x)66dx=142[(1x)]01=142
Commented by physicstutes last updated on 14/Nov/20
from your method i deduce that:  I_n  = −[((x(1−x)^(n+1) )/(n+1))]_0 ^1 + ∫_0 ^1  (((1−x)^(n+1) )/(n+1)) dx  I_n  = (1/(n+1)) ∫_0 ^1 (1−x)^(n+1) dx   Thanks
fromyourmethodideducethat:In=[x(1x)n+1n+1]01+10(1x)n+1n+1dxIn=1n+110(1x)n+1dxThanks
Commented by Dwaipayan Shikari last updated on 14/Nov/20
∫_0 ^1 x(1−x)^n dx=∫_0 ^1 (1−x)x^n dx =(1/(n+1))−(1/(n+2))  here n=5  so, (1/(42))
01x(1x)ndx=01(1x)xndx=1n+11n+2heren=5so,142
Answered by Dwaipayan Shikari last updated on 14/Nov/20
∫_0 ^1 x(1−x)^n dx  =β(2,n+1)=((Γ(2)Γ(n+1))/(Γ(n+3)))=((Γ(n+1))/(Γ(n+3)))  So  ∫_0 ^1 x(1−x)^5 dt=((Γ(5+1))/(Γ(5+3)))=((5!)/(7!))=(1/(42))
01x(1x)ndx=β(2,n+1)=Γ(2)Γ(n+1)Γ(n+3)=Γ(n+1)Γ(n+3)So01x(1x)5dt=Γ(5+1)Γ(5+3)=5!7!=142
Commented by physicstutes last updated on 14/Nov/20
Magnifcent!
Magnifcent!
Answered by mathmax by abdo last updated on 14/Nov/20
I_n =∫_0 ^1  x(1−x)^n dx we know   B(p,q) =∫_0 ^1  x^(p−1) (1−x)^(q−1) dx ⇒  B(p,q) =((Γ(p).Γ(q))/(Γ(p+q))) ⇒I_n =∫_0 ^1  x^(2−1) (1−x)^(n+1−1) dx =B(2,n+1)  =((Γ(2).Γ(n+1))/(Γ(2+n+1))) =((1! n!)/((n+2)!)) =((n!)/((n+2)(n+1)n!)) =(1/((n+1)(n+2)))   (I_n /I_(n−2) )=(1/((n+1)(n+2))) .(n−1)n =((n(n−1))/((n+1)(n+2))) ⇒  I_n =((n(n−1))/((n+1)(n+2)))I_(n−2)       (n≥2)  ∫_0 ^1 x(1−x)^5 dx =I_5 =(1/(6.7)) =(1/(42))
In=01x(1x)ndxweknowB(p,q)=01xp1(1x)q1dxB(p,q)=Γ(p).Γ(q)Γ(p+q)In=01x21(1x)n+11dx=B(2,n+1)=Γ(2).Γ(n+1)Γ(2+n+1)=1!n!(n+2)!=n!(n+2)(n+1)n!=1(n+1)(n+2)InIn2=1(n+1)(n+2).(n1)n=n(n1)(n+1)(n+2)In=n(n1)(n+1)(n+2)In2(n2)01x(1x)5dx=I5=16.7=142

Leave a Reply

Your email address will not be published. Required fields are marked *