Menu Close

Given-that-I-n-0-1-x-n-1-x-2-dx-Show-that-I-n-2-I-n-1-I-n-4-I-n-




Question Number 170662 by MikeH last updated on 28/May/22
Given that   I_n  = ∫_0 ^1 x^n (√(1−x^2 )) dx  Show that   I_(n+2)  = ((I_(n+1) /I_(n+4) ))I_n
$$\mathrm{Given}\:\mathrm{that}\: \\ $$$${I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx} \\ $$$$\mathrm{Show}\:\mathrm{that} \\ $$$$\:{I}_{{n}+\mathrm{2}} \:=\:\left(\frac{{I}_{{n}+\mathrm{1}} }{{I}_{{n}+\mathrm{4}} }\right){I}_{{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *