Menu Close

Given-that-in-ABC-sin-A-sin-B-sin-B-sin-C-sin-C-sin-A-6-4-5-Find-the-angle-A-




Question Number 161464 by ZiYangLee last updated on 18/Dec/21
Given that in ΔABC,  (sin A+sin B):(sin B+sin C):(sin C+sin A)= 6: 4: 5  Find the angle A.
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{in}\:\Delta\mathrm{ABC}, \\ $$$$\left(\mathrm{sin}\:\mathrm{A}+\mathrm{sin}\:\mathrm{B}\right):\left(\mathrm{sin}\:\mathrm{B}+\mathrm{sin}\:\mathrm{C}\right):\left(\mathrm{sin}\:\mathrm{C}+\mathrm{sin}\:\mathrm{A}\right)=\:\mathrm{6}:\:\mathrm{4}:\:\mathrm{5} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{A}. \\ $$
Commented by cortano last updated on 18/Dec/21
  { ((sin A+sin B=6k)),((sin B+sin C=4k)),((sin C+sin A=5k)) :}   ⇒sin A+sin B+sin C = ((15k)/2)  ⇒ { ((sin A=((7k)/2))),((sin B=((5k)/2))),((sin C=((3k)/2))) :} ;sin A : sin B : sin C = 7:5:3   so a:b:c = 7:5:3  ⇒cos A = ((25+9−49)/(2×5×3))=−((15)/(30))   ⇒A=120°
$$\:\begin{cases}{\mathrm{sin}\:{A}+\mathrm{sin}\:{B}=\mathrm{6}{k}}\\{\mathrm{sin}\:{B}+\mathrm{sin}\:{C}=\mathrm{4}{k}}\\{\mathrm{sin}\:{C}+\mathrm{sin}\:{A}=\mathrm{5}{k}}\end{cases} \\ $$$$\:\Rightarrow\mathrm{sin}\:{A}+\mathrm{sin}\:{B}+\mathrm{sin}\:{C}\:=\:\frac{\mathrm{15}{k}}{\mathrm{2}} \\ $$$$\Rightarrow\begin{cases}{\mathrm{sin}\:{A}=\frac{\mathrm{7}{k}}{\mathrm{2}}}\\{\mathrm{sin}\:{B}=\frac{\mathrm{5}{k}}{\mathrm{2}}}\\{\mathrm{sin}\:{C}=\frac{\mathrm{3}{k}}{\mathrm{2}}}\end{cases}\:;\mathrm{sin}\:{A}\::\:\mathrm{sin}\:{B}\::\:\mathrm{sin}\:{C}\:=\:\mathrm{7}:\mathrm{5}:\mathrm{3} \\ $$$$\:{so}\:{a}:{b}:{c}\:=\:\mathrm{7}:\mathrm{5}:\mathrm{3} \\ $$$$\Rightarrow\mathrm{cos}\:{A}\:=\:\frac{\mathrm{25}+\mathrm{9}−\mathrm{49}}{\mathrm{2}×\mathrm{5}×\mathrm{3}}=−\frac{\mathrm{15}}{\mathrm{30}} \\ $$$$\:\Rightarrow{A}=\mathrm{120}° \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *