Menu Close

given-that-is-a-real-number-use-mathematical-induction-or-otherwise-to-show-that-cos-2-cos-2-2-cos-2-3-cos-2-n-sin-2-n-sin-2-n-hence-find-the-lim-n-




Question Number 93365 by Rio Michael last updated on 12/May/20
given that α is a real number, use mathematical induction or  otherwise to show that      cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^n )) = ((sin α)/(2^n  sin((α/2^n ))))  hence find the   lim_(n→∞)  cos((α/2))cos((α/2^2 ))cos((α/2^3 )) ... cos((α/2^n ))
giventhatαisarealnumber,usemathematicalinductionorotherwisetoshowthatcos(α2)cos(α22)cos(α23)cos(α2n)=sinα2nsin(α2n)hencefindthelimncos(α2)cos(α22)cos(α23)cos(α2n)
Commented by mr W last updated on 12/May/20
P=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^n ))  P 2 sin ((α/2^n ))=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^n ))2 sin ((α/2^n ))  P 2 sin ((α/2^n ))=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^(n−1) )) sin ((α/2^n ))  P 2^2  sin ((α/2^n ))=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^(n−1) ))2 sin ((α/2^n ))  P 2^2  sin ((α/2^n ))=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^(n−2) ))sin ((α/2^(n−1) ))  P 2^3  sin ((α/2^n ))=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...sin ((α/2^(n−2) ))  ......  P 2^(n−1)  sin ((α/2^n ))=cos ((α/2))sin ((α/2))  P 2^n  sin ((α/2^n ))=cos ((α/2))2 sin ((α/2))  P 2^n  sin ((α/2^n ))=sin (α)  ⇒P=((sin (α))/(2^n sin ((α/2^n ))))  ⇒lim_(n→∞) P=((sin (α))/α)×((((α/2^n )))/(sin ((α/2^n ))))=((sin (α))/α)
P=cos(α2)cos(α22)cos(α23)cos(α2n)P2sin(α2n)=cos(α2)cos(α22)cos(α23)cos(α2n)2sin(α2n)P2sin(α2n)=cos(α2)cos(α22)cos(α23)cos(α2n1)sin(α2n)P22sin(α2n)=cos(α2)cos(α22)cos(α23)cos(α2n1)2sin(α2n)P22sin(α2n)=cos(α2)cos(α22)cos(α23)cos(α2n2)sin(α2n1)P23sin(α2n)=cos(α2)cos(α22)cos(α23)sin(α2n2)P2n1sin(α2n)=cos(α2)sin(α2)P2nsin(α2n)=cos(α2)2sin(α2)P2nsin(α2n)=sin(α)P=sin(α)2nsin(α2n)limnP=sin(α)α×(α2n)sin(α2n)=sin(α)α
Commented by Rio Michael last updated on 12/May/20
perfect sir
perfectsir
Commented by Rio Michael last updated on 12/May/20
Q93368  sir pleasecan you try this one
Q93368sirpleasecanyoutrythisone

Leave a Reply

Your email address will not be published. Required fields are marked *