Menu Close

Given-that-LCM-A-B-C-252-LCM-A-B-36-amp-LCM-A-C-63-then-LCM-B-C-Pl-determine-all-possible-answers-




Question Number 30687 by Rasheed.Sindhi last updated on 24/Feb/18
Given that LCM(A,B,C)=252  LCM(A,B)=36 & LCM(A,C)=63;  then:                     LCM(B,C)=?  Pl determine all possible answers.
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{LCM}\left(\mathrm{A},\mathrm{B},\mathrm{C}\right)=\mathrm{252} \\ $$$$\mathrm{LCM}\left(\mathrm{A},\mathrm{B}\right)=\mathrm{36}\:\&\:\mathrm{LCM}\left(\mathrm{A},\mathrm{C}\right)=\mathrm{63}; \\ $$$$\mathrm{then}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{LCM}\left(\mathrm{B},\mathrm{C}\right)=? \\ $$$$\mathrm{Pl}\:\mathrm{determine}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{answers}. \\ $$
Answered by MJS last updated on 24/Feb/18
252=2^2 3^2 7  36=2^2 3^2   63=3^2 7  {A,B}={4,9}∨{9,4}∨{1,36}∨{36,1}  {A,C}={7,9}∨{9,7}∨{1,63}∨{63,1}  A=9  B=4  C=7  LCM(4,7)=28  or  A=1  B=36  C=63  LCM(36,63)=252
$$\mathrm{252}=\mathrm{2}^{\mathrm{2}} \mathrm{3}^{\mathrm{2}} \mathrm{7} \\ $$$$\mathrm{36}=\mathrm{2}^{\mathrm{2}} \mathrm{3}^{\mathrm{2}} \\ $$$$\mathrm{63}=\mathrm{3}^{\mathrm{2}} \mathrm{7} \\ $$$$\left\{{A},{B}\right\}=\left\{\mathrm{4},\mathrm{9}\right\}\vee\left\{\mathrm{9},\mathrm{4}\right\}\vee\left\{\mathrm{1},\mathrm{36}\right\}\vee\left\{\mathrm{36},\mathrm{1}\right\} \\ $$$$\left\{{A},{C}\right\}=\left\{\mathrm{7},\mathrm{9}\right\}\vee\left\{\mathrm{9},\mathrm{7}\right\}\vee\left\{\mathrm{1},\mathrm{63}\right\}\vee\left\{\mathrm{63},\mathrm{1}\right\} \\ $$$${A}=\mathrm{9} \\ $$$${B}=\mathrm{4} \\ $$$${C}=\mathrm{7} \\ $$$${LCM}\left(\mathrm{4},\mathrm{7}\right)=\mathrm{28} \\ $$$$\mathrm{or} \\ $$$$\mathrm{A}=\mathrm{1} \\ $$$${B}=\mathrm{36} \\ $$$${C}=\mathrm{63} \\ $$$${LCM}\left(\mathrm{36},\mathrm{63}\right)=\mathrm{252} \\ $$
Commented by Rasheed.Sindhi last updated on 24/Feb/18
ThαηκS Sir!  Are other answers also possible?  Could we detefmine all possibilities?
$$\mathcal{T}{h}\alpha\eta\kappa\mathcal{S}\:\mathcal{S}{ir}! \\ $$$$\mathcal{A}\mathrm{re}\:\mathrm{other}\:\mathrm{answers}\:\mathrm{also}\:\mathrm{possible}? \\ $$$$\mathrm{Could}\:\mathrm{we}\:\mathrm{detefmine}\:\mathrm{all}\:\mathrm{possibilities}? \\ $$
Commented by MJS last updated on 24/Feb/18
sorry, even more possibilities:  if A or B = 36 the other one can be  1,2,3,4,6,9,12,18 or 36  if A or C = 63 the other one can be  1,3,7,9,21 or 63  so also possible:  {A,B,C}={3,36,63}∨{9,36,63}  but the LCM(B,C) is 252 too
$$\mathrm{sorry},\:\mathrm{even}\:\mathrm{more}\:\mathrm{possibilities}: \\ $$$$\mathrm{if}\:{A}\:\mathrm{or}\:{B}\:=\:\mathrm{36}\:\mathrm{the}\:\mathrm{other}\:\mathrm{one}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{6},\mathrm{9},\mathrm{12},\mathrm{18}\:\mathrm{or}\:\mathrm{36} \\ $$$$\mathrm{if}\:{A}\:\mathrm{or}\:{C}\:=\:\mathrm{63}\:\mathrm{the}\:\mathrm{other}\:\mathrm{one}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{1},\mathrm{3},\mathrm{7},\mathrm{9},\mathrm{21}\:\mathrm{or}\:\mathrm{63} \\ $$$$\mathrm{so}\:\mathrm{also}\:\mathrm{possible}: \\ $$$$\left\{{A},{B},{C}\right\}=\left\{\mathrm{3},\mathrm{36},\mathrm{63}\right\}\vee\left\{\mathrm{9},\mathrm{36},\mathrm{63}\right\} \\ $$$$\mathrm{but}\:\mathrm{the}\:{LCM}\left({B},{C}\right)\:\mathrm{is}\:\mathrm{252}\:\mathrm{too} \\ $$
Commented by soksan last updated on 25/Feb/18
252=2^2 3^2 7
$$\mathrm{252}=\mathrm{2}^{\mathrm{2}} \mathrm{3}^{\mathrm{2}} \mathrm{7} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *