Menu Close

Given-that-lim-x-0-f-x-x-h-L-then-lim-x-0-f-x-2x-h-




Question Number 80172 by Rio Michael last updated on 31/Jan/20
Given that  lim_(x→0)  ((√(f(x)+ x))/h) = L then   lim_(x→0) ((√(f(x) + 2x))/h) = ?
Giventhatlimx0f(x)+xh=Lthenlimx0f(x)+2xh=?
Commented by john santu last updated on 31/Jan/20
lim_(x→0)  ((√(f(x)+x))/h) or lim_(x→0) ((√(f(x)+x))/x)  ?
limx0f(x)+xhorlimx0f(x)+xx?
Commented by john santu last updated on 31/Jan/20
we assume   lim_(x→0)  ((√(f(x)+x))/x) = lim_(x→0)  (√(((f(x)+x)/x^2 ) ))=L  (√(lim_(x→0)  ((f(x)+x)/x^2 ))) =L  lim_(x→0)  ((f ′(x)+1)/(2x)) = L^2  , (f ′(0) = −1)  lim_(x→0)  ((f ′′(x))/2) = L^2  ⇒f ′′(0)=2L^2   similarly lim_(x→0)  ((√(f(x)+2x))/x) = L
weassumelimx0f(x)+xx=limx0f(x)+xx2=Llimx0f(x)+xx2=Llimx0f(x)+12x=L2,(f(0)=1)limx0f(x)2=L2f(0)=2L2similarlylimx0f(x)+2xx=L

Leave a Reply

Your email address will not be published. Required fields are marked *