Menu Close

Given-that-lim-x-0-f-x-x-h-L-then-lim-x-0-f-x-2x-h-




Question Number 80172 by Rio Michael last updated on 31/Jan/20
Given that  lim_(x→0)  ((√(f(x)+ x))/h) = L then   lim_(x→0) ((√(f(x) + 2x))/h) = ?
$${Given}\:{that}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{f}\left({x}\right)+\:{x}}}{{h}}\:=\:{L}\:{then} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{{f}\left({x}\right)\:+\:\mathrm{2}{x}}}{{h}}\:=\:? \\ $$
Commented by john santu last updated on 31/Jan/20
lim_(x→0)  ((√(f(x)+x))/h) or lim_(x→0) ((√(f(x)+x))/x)  ?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{f}\left({x}\right)+{x}}}{{h}}\:{or}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{{f}\left({x}\right)+{x}}}{{x}}\:\:? \\ $$
Commented by john santu last updated on 31/Jan/20
we assume   lim_(x→0)  ((√(f(x)+x))/x) = lim_(x→0)  (√(((f(x)+x)/x^2 ) ))=L  (√(lim_(x→0)  ((f(x)+x)/x^2 ))) =L  lim_(x→0)  ((f ′(x)+1)/(2x)) = L^2  , (f ′(0) = −1)  lim_(x→0)  ((f ′′(x))/2) = L^2  ⇒f ′′(0)=2L^2   similarly lim_(x→0)  ((√(f(x)+2x))/x) = L
$${we}\:{assume}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{f}\left({x}\right)+{x}}}{{x}}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{\frac{{f}\left({x}\right)+{x}}{{x}^{\mathrm{2}} }\:}={L} \\ $$$$\sqrt{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({x}\right)+{x}}{{x}^{\mathrm{2}} }}\:={L} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\:'\left({x}\right)+\mathrm{1}}{\mathrm{2}{x}}\:=\:{L}^{\mathrm{2}} \:,\:\left({f}\:'\left(\mathrm{0}\right)\:=\:−\mathrm{1}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\:''\left({x}\right)}{\mathrm{2}}\:=\:{L}^{\mathrm{2}} \:\Rightarrow{f}\:''\left(\mathrm{0}\right)=\mathrm{2}{L}^{\mathrm{2}} \\ $$$${similarly}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{f}\left({x}\right)+\mathrm{2}{x}}}{{x}}\:=\:{L} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *