Question Number 54875 by shaddie last updated on 13/Feb/19
$$\mathrm{Given}\:\mathrm{that}\frac{\mathrm{log}\left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{2x}−\mathrm{1}} }{\mathrm{log}\left(\mathrm{3x}+\mathrm{1}\right)}=\mathrm{5},\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}. \\ $$
Answered by kaivan.ahmadi last updated on 14/Feb/19
$$\mathrm{log}\left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{2x}−\mathrm{1}} =\mathrm{log}\left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{5}} \Rightarrow \\ $$$$\left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{2x}−\mathrm{1}} =\left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{5}} \Rightarrow\mathrm{2x}−\mathrm{1}=\mathrm{5}\Rightarrow \\ $$$$\mathrm{x}=\mathrm{3} \\ $$
Answered by Otchere Abdullai last updated on 14/Feb/19
$${solution} \\ $$$$\frac{{log}\left(\mathrm{3}{x}+\mathrm{1}\right)^{\mathrm{2}{x}−\mathrm{1}} }{{log}\left(\mathrm{3}{x}+\mathrm{1}\right)}=\mathrm{5} \\ $$$$\Rightarrow\frac{\left(\mathrm{2}{x}−\mathrm{1}\right){log}\left(\mathrm{3}{x}+\mathrm{1}\right)}{{log}\left(\mathrm{3}{x}+\mathrm{1}\right)}=\mathrm{5} \\ $$$$\Rightarrow\mathrm{2}{x}−\mathrm{1}=\mathrm{5} \\ $$$$\Rightarrow\mathrm{2}{x}=\mathrm{5}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}{x}=\mathrm{6} \\ $$$$\Rightarrow\frac{\mathrm{2}{x}}{\mathrm{2}}=\frac{\mathrm{6}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\mathrm{3} \\ $$