Menu Close

Given-that-log-a-b-c-log-b-c-a-log-c-a-b-find-the-value-of-a-a-b-b-c-c-




Question Number 124705 by ZiYangLee last updated on 05/Dec/20
Given that  ((log a)/(b−c))=((log b)/(c−a))=((log c)/(a−b))  find the value of a^a b^b c^c .
Giventhatlogabc=logbca=logcabfindthevalueofaabbcc.
Answered by TANMAY PANACEA last updated on 05/Dec/20
p=a^a b^b c^c   logp=aloga+blogb+clogc  =a×k(b−c)+bk(c−a)+ck(a−b)  =0  logp=0=log1  p=1
p=aabbcclogp=aloga+blogb+clogc=a×k(bc)+bk(ca)+ck(ab)=0logp=0=log1p=1
Answered by benjo_mathlover last updated on 05/Dec/20
 { ((log a^(c−a)  = log b^(b−c) )),((log a^(a−b)  = log c^(b−c) )) :}   { (((a^c /a^a ) = (b^b /b^c ) ⇒(ab)^c = a^a b^b )),(((a^a /a^b ) = (c^b /c^c ) ⇒c^c  = (((ac)^b )/a^a ))) :}  then a^a b^b c^c  = (ab)^c .c^c  = (abc)^c
{logaca=logbbclogaab=logcbc{acaa=bbbc(ab)c=aabbaaab=cbcccc=(ac)baathenaabbcc=(ab)c.cc=(abc)c

Leave a Reply

Your email address will not be published. Required fields are marked *