Menu Close

Given-that-log-x-y-z-log-y-z-x-log-z-x-y-Show-that-x-x-y-y-z-z-1-




Question Number 17075 by tawa tawa last updated on 30/Jun/17
Given that:  log((x/(y − z))) = log((y/(z − x))) = log((z/(x − y)))  Show that :   x^x  × y^y  × z^z  = 1
Giventhat:log(xyz)=log(yzx)=log(zxy)Showthat:xx×yy×zz=1
Commented by RasheedSoomro last updated on 30/Jun/17
   log((x/(y − z))) = log((y/(z − x))) = log((z/(x − y)))   ⇒ (x/(y − z)) = (y/(z − x)) = (z/(x − y))=((x+y+z)/(y−z+z−x+x−y))                                                          =((x+y+z)/0)=∞          ???
log(xyz)=log(yzx)=log(zxy)xyz=yzx=zxy=x+y+zyz+zx+xy=x+y+z0=???
Answered by 433 last updated on 30/Jun/17
    (x/(y−z))>0 & (y/(z−x))>0 & (z/(x−y))>0  x(y−z)>0 & y(z−x)>0 & z(x−y)>0  xy−xz>0 & yz−yx>0 & zx−zy>0  xy>xz & yz>yx & zx>zy  xy>xz>zy>yx  xy>yx
xyz>0&yzx>0&zxy>0x(yz)>0&y(zx)>0&z(xy)>0xyxz>0&yzyx>0&zxzy>0xy>xz&yz>yx&zx>zyxy>xz>zy>yxxy>yx
Answered by mrW1 last updated on 30/Jun/17
This question can not be correct!    if  log((x/(y − z))) = log((y/(z − x))) = log((z/(x − y)))  ⇒(x/(y−z))=(y/(z−x))=(z/(x−y))=(1/a) let′s say  x≠0,y≠0,z≠0,a≠0  y−z=ax   ...(i)  z−x=ay   ...(ii)  x−y=az   ...(iii)    0=a(x+y+z)  ⇒x+y+z=0  y+z=−x  y−z=ax  ⇒y=((−1+a)/2)x  ⇒z=((−1−a)/2)x  put this into (ii) or (iii)  x−((−1+a)/2)x=a((−1−a)/2)x  (2+1−a)x=(−1−a)ax  (3−a+a^2 +a)x=0  a^2 +3=0  !  no such value for a is possible.  that means it′s not true that  log((x/(y − z))) = log((y/(z − x))) = log((z/(x − y)))
Thisquestioncannotbecorrect!iflog(xyz)=log(yzx)=log(zxy)xyz=yzx=zxy=1aletssayx0,y0,z0,a0yz=ax(i)zx=ay(ii)xy=az(iii)0=a(x+y+z)x+y+z=0y+z=xyz=axy=1+a2xz=1a2xputthisinto(ii)or(iii)x1+a2x=a1a2x(2+1a)x=(1a)ax(3a+a2+a)x=0a2+3=0!nosuchvalueforaispossible.thatmeansitsnottruethatlog(xyz)=log(yzx)=log(zxy)

Leave a Reply

Your email address will not be published. Required fields are marked *