Menu Close

Given-that-N-1-2-3-500-is-the-product-of-the-positive-integers-from-1-to-500-If-N-is-divisible-by-6-k-find-the-largest-possible-value-of-k-




Question Number 115294 by ZiYangLee last updated on 24/Sep/20
Given that N=1×2×3×...×500 is the  product of the positive integers from 1 to 500.    If N is divisible by 6^k , find the largest possible  value of k.
GiventhatN=1×2×3××500istheproductofthepositiveintegersfrom1to500.IfNisdivisibleby6k,findthelargestpossiblevalueofk.
Answered by Olaf last updated on 25/Sep/20
N = 500!  2,4,6,8...498,500 are divisible by 2  (250 numbers)  3,6,9,12...495,498 are divisible by 3  3 = 3×1  6 = 3×2  ...  498 = 3×166  (166 numbers)    250 numbers are divisible by 2  166 numbers are divisible by 3  6^k  = 2^k ×3^k  : k_(max)  = 166  Sorry but i′m wrong.  see mr W.
N=500!2,4,6,8498,500aredivisibleby2(250numbers)3,6,9,12495,498aredivisibleby33=3×16=3×2498=3×166(166numbers)250numbersaredivisibleby2166numbersaredivisibleby36k=2k×3k:kmax=166Sorrybutimwrong.seemrW.
Answered by mr W last updated on 25/Sep/20
2,2×2,3×2,...,250×2 ⇒2^(250×1)   2^2 ,2×2^2 ,3×2^2 ,...,125×2^2  ⇒2^(125×2)   2^3 ,2×2^3 ,3×2^3 ,...,62×2^3  ⇒2^(62×3)   2^4 ,2×2^4 ,3×2^4 ,...,31×2^4  ⇒2^(31×4)   2^5 ,2×2^5 ,3×2^5 ,...,15×2^5  ⇒2^(15×5)   2^6 ,2×2^6 ,3×2^6 ,...,7×2^6  ⇒2^(7×6)   2^7 ,2×2^7 ,3×2^7 ,...,3×2^7  ⇒2^(3×7)   2^8  ⇒2^(1×8)   250+125+62+31+15+7+3+1=494  ⇒500! contains 2^(494)     3,2×3,3×3,...,166×3 ⇒3^(166×1)   3^2 ,2×3^2 ,3×3^2 ,...,55×3^2  ⇒3^(55×2)   3^3 ,2×3^3 ,3×3^3 ,...,18×3^3  ⇒3^(18×3)   3^4 ,2×3^4 ,3×3^4 ,...,6×3^4  ⇒3^(6×4)   3^5 ,2×3^5  ⇒3^(2×5)   166+55+18+6+2=247  ⇒500! contains 3^(247)     ⇒500! contains 2^(494) ×3^(247)   ⇒500! contains 6^(247)   ⇒k_(max) =247
2,2×2,3×2,,250×22250×122,2×22,3×22,,125×222125×223,2×23,3×23,,62×23262×324,2×24,3×24,,31×24231×425,2×25,3×25,,15×25215×526,2×26,3×26,,7×2627×627,2×27,3×27,,3×2723×72821×8250+125+62+31+15+7+3+1=494500!contains24943,2×3,3×3,,166×33166×132,2×32,3×32,,55×32355×233,2×33,3×33,,18×33318×334,2×34,3×34,,6×3436×435,2×3532×5166+55+18+6+2=247500!contains3247500!contains2494×3247500!contains6247kmax=247
Commented by Olaf last updated on 25/Sep/20
Mister W you are wright.  Good job !
MisterWyouarewright.Goodjob!
Commented by mr W last updated on 25/Sep/20
i think we can generally do like this:  to get k such that n! is divisible by  p^k  where p=prime,  k=⌊(n/p)⌋+⌊(n/p^2 )⌋+⌊(n/p^3 )⌋+...    for example n=500, p=7  k=⌊((500)/7)⌋+⌊((500)/7^2 )⌋+⌊((500)/7^3 )⌋+...  =71+10+1  =82  ⇒500! contains 7^(82)     for example n=500, p=3  k=⌊((500)/3)⌋+⌊((500)/3^2 )⌋+⌊((500)/3^3 )⌋+...  =166+55+18+6+2  =247  ⇒500! contains 3^(247)
ithinkwecangenerallydolikethis:togetksuchthatn!isdivisiblebypkwherep=prime,k=np+np2+np3+forexamplen=500,p=7k=5007+50072+50073+=71+10+1=82500!contains782forexamplen=500,p=3k=5003+50032+50033+=166+55+18+6+2=247500!contains3247
Commented by ZiYangLee last updated on 26/Sep/20
Wow!!!
Wow!!!
Commented by Lordose last updated on 01/Oct/20
Thanks sir Mr W
ThankssirMrW

Leave a Reply

Your email address will not be published. Required fields are marked *