Menu Close

Given-that-N-625-1-9-5-2-1-9-8-2-1-9-11-2-1-9-125-2-Find-the-sum-of-the-digits-of-N-




Question Number 114570 by ZiYangLee last updated on 19/Sep/20
Given that   N=625(1−(9/5^2 ))(1−(9/8^2 ))(1−(9/(11^2 )))...(1−(9/(125^2 )))  Find the sum of the digits of N.
GiventhatN=625(1952)(1982)(19112)(191252)FindthesumofthedigitsofN.
Answered by floor(10²Eta[1]) last updated on 19/Sep/20
N=625(((2.8)/5^2 ))(((5.11)/8^2 ))(((8.14)/(11^2 )))(((11.17)/(14^2 )))...(((122.128)/(125^2 )))  N=625((2/5))(((128)/(125)))=2.128=256  2+5+6=13
N=625(2.852)(5.1182)(8.14112)(11.17142)(122.1281252)N=625(25)(128125)=2.128=2562+5+6=13
Answered by Olaf last updated on 19/Sep/20
N = 625Π_(n=1) ^(41) (1−(9/((3n+2)^2 )))  N = 625Π_(n=1) ^(41) ((((3n+2)^2 −9)/((3n+2)^2 )))  N = 625Π_(n=1) ^(41) (((9n^2 +12n−5)/((3n+2)^2 )))  9n^2 +12n−5 = 0  Δ′ = 36−9(−5) = 36+45 = 81  1st root : ((−6−9)/9) = −(5/3)  2nd root : ((−6+9)/9) = (1/3)  N = 625Π_(n=1) ^(41) ((9(n+(5/3))(n−(1/3)))/((3n+2)^2 ))  N = 625Π_(n=1) ^(41) (((3n+5)(3n−1))/((3n+2)^2 ))  N = 625Π_(n=1) ^(41) (((3(n+1)+2)(3(n−1)+2))/((3n+2)^2 ))  u_n  = 3n+2, n≥0  N = 625((Π_(n=1) ^(41) u_(n+1) ×Π_(n=1) ^(41) u_(n−1) )/((Π_(n=1) ^(41) u_n )^2 ))  N = 625((Π_(n=2) ^(42) u_n ×Π_(n=0) ^(40) u_n )/((Π_(n=1) ^(41) u_n )^2 ))  N = 625×(u_(42) /u_1 )×(u_0 /u_(41) )  u_0  = 3(0)+2 = 2  u_1  = 3(1)+2 = 5  u_(41)  = 3(41)+2 = 125  u_(42)  = 3(42)+2 = 128  N = 625×((128)/5)×(2/(125))  N = 256  sum of the digits of N is :  2 + 5 + 6 = 13
N=62541n=1(19(3n+2)2)N=62541n=1((3n+2)29(3n+2)2)N=62541n=1(9n2+12n5(3n+2)2)9n2+12n5=0Δ=369(5)=36+45=811stroot:699=532ndroot:6+99=13N=62541n=19(n+53)(n13)(3n+2)2N=62541n=1(3n+5)(3n1)(3n+2)2N=62541n=1(3(n+1)+2)(3(n1)+2)(3n+2)2un=3n+2,n0N=62541n=1un+1×41n=1un1(41n=1un)2N=62542n=2un×40n=0un(41n=1un)2N=625×u42u1×u0u41u0=3(0)+2=2u1=3(1)+2=5u41=3(41)+2=125u42=3(42)+2=128N=625×1285×2125N=256sumofthedigitsofNis:2+5+6=13

Leave a Reply

Your email address will not be published. Required fields are marked *